Luminescence Efficiency of fast Yttrium Aluminum Garnet Phosphor Screens for use in Digital Breast Tomosynthesis
Abstract
In the present study scintillating screens prepared from Y3Al5O12:Ce (YAG:Ce) powder phosphor were evaluated for use in digital mammography. YAG:Ce has never previously been used in X-ray medical imaging, however since it emits green light (i.e peak at 550nm), it is expected to match well the spectral sensitivities of most photodetectors (photodiodes, CCDs and amorphous silicon sensors) incorporated in various digital breast tomosynthesis detectors. YAG:Ce was purchased in powder form and was used in order to prepare test screens in the laboratory. Screens were evaluated by determining the quantum detection efficiency (QDE), the energy absorption efficiency (EAE), the absolute luminescence efficiency (AE), the X-ray luminescence efficiency (XLE), the light emission spectrum, the X-ray to light intrinsic conversion efficiency and the spectral compatibility with various digital photodetectors. Results were compared with phosphor materials commercially employed in X-ray imaging such as CsI:Tl and Gd2O2S:Tb. Maximum YAG:Ce emission efficiency was observed for the 63 mg/cm2 screen at 49 kVp. The spectral compatibility with amorphous silicon photodiodes (0.93) and CCDs (0.95) was found to be very high, better than the corresponding compatibility of the CsI:Tl screen, mostly used in current digital radiography detectors. Taking into account the YAG:Ce overall performance, its short decay time as well as its spectral compatibility with amorphous silicon detectors and CCDs, YAG:Ce could be of interest for further investigation for applications in digital breast tomosynthesis detectors
Keywords
Luminescence Efficiency, Matching Factor, Powder Phosphors, Mammography
DOI: 10.26265/e-jst.v5i2.641
Refbacks
- There are currently no refbacks.