An Academic E-government Platform for Managing Educational and Research Activities
Abstract
Abstract:
Purpose - In this article, we propose the architecture of an E-government platform for Educational and Research Management (e-EDURES) in Higher Education Institutions. An integrated strategic planning and decision support system (DSS) is included at the center of the architecture for facilitating the decisions and the design of future actions, enabled by data mining and visual analytics techniques.
Design/methodology/approach - The platform study focuses on the development of services related to i) the management of educational data generated by blended learning, along with ii) the utilization of data related to R&D activities in higher education Institutions. The proposed approach studies the system architecture at four levels: data collection, data preparation, data mining, and knowledge discovery.
Findings - The e-EDURES platform should be based on data mining techniques to predict the potential learning progress of each student, whereas focusing on research, Social Network Analysis, and coauthorship networks modeling using graph metrics and Data Environment Analysis have been used as a measure of the effectiveness of the research activities.
Originality/value - The platform incorporates interactive visual interfaces to support Knowledge Discovery from Data Visualization, providing the user with enhanced assistance throughout the decision-making process.
Keywords
References
Hassan, N. S., & Seyal, A. (2015, June). Measuring success of higher education centralised administration information system: an e-government Initiative. In Proc. Eur. Conf. e-Government, ECEG (Vol. 2015, pp. 455-464).
Baheer, B.A., Lamas, D., and Sousa, S. (2020). A systematic literature review on existing digital government architectures: state-of-the-art, challenges, and prospects. Administrative Sciences, 10(25), 1-28. https://doi.org/10.3390/admsci10020025
Riad, A., El-Bakry, M. & El-Adl, G. (2010). A Novel DSS Framework for E-Government. International Journal of Computer Science Issues, 7 (6). 33–37
S Liu, AHB Duffy, RI Whitfield, IM Boyle (2010). Integration of decision support systems to improve decision support performance. Knowledge and Information Systems, 22, 261-286. https://doi.org/10.1007/s10115-009-0192-4
Ltifi, H., Benmohamed, E., Kolski, C., & Ayed, M. B. (2016). Enhanced visual data mining process for dynamic decision-making. Knowledge-Based Systems, 112, 166-181. https://doi.org/10.1016/j.knosys.2016.09.009.
Zorrilla M., García-Saiz D. (2013). A service-oriented architecture to provide data mining services for non-expert data miners. Decision Support Systems, 55, 1, 399-411. https://doi.org/10.1016/j.dss.2012.05.045
Fischer G. (1989). Human–computer interaction software: lessons learned, challenges ahead. IEEE Software 6 (1) 44–52. https://doi.org/10.1109/52.16901
Yunhong Xu, Xitong Guo,Jinxing Hao, Jian Ma, Raymond Y.K. Lau,Wei Xu. (2012). Combining social network and semantic concept analysis for personalized academic researcher recommendation. 54( 1) 564–573. https://doi.org/10.1016/j.dss.2012.08.003
e Costa, C. A. B., & Oliveira, M. D. (2012). A multicriteria decision analysis model for faculty evaluation. Omega, 40(4), 424-436. https://doi.org/10.1016/j.omega.2011.08.006
Coccia, M., & Bozeman, B. (2016). Allometric models to measure and analyze the evolution of international research collaboration. Scientometrics, 108(3), 1065-1084. https://doi.org/10.1007/s11192-016-2027-x
Gupta, M., & Mishra, R. (2021). Spreading the information in complex networks: Identifying a set of top-N influential nodes using network structure. Decision Support Systems, 149. https://doi.org/10.1016/j.dss.2021.113608
Choi, M., Lee, H., & Zoo, H. (2021). Scientific knowledge production and research collaboration between Australia and South Korea: patterns and dynamics based on coauthorship. Scientometrics, 126(1), 683-706. https://doi.org/10.1007/s11192-020-03765-2
Krafft, D. B., Cappadona, N. A., Caruso, B., Corson-Rikert, J., Devare, M., Lowe, B. J., & VIVO Collaboration. (2010). Vivo: Enabling national networking of scientists. In Proceedings of the WebSci10, Raleigh, NC
National Institutes of Health. Research portfolio online reporting tool. Available from: https://reporter.nih.gov/. Accessed January 10, 2023.
National Library of Medicine. Available from: http://www.ncbi.nlm.nih.gov/pubmed. Accessed April 27, 2023.
Lane, J., & Bertuzzi, S. (2010, December). The STAR METRICS project: current and future uses for S&E workforce data. In Science of Science Measurement Workshop, held Washington DC (Vol. 12). National Science Foundation; National Institutes of Health.
Bhattarai, B. P., Paudyal, S., Luo, Y., Mohanpurkar, M., Cheung, K., Tonkoski, R. & Zhang, X. (2019). Big data analytics in smart grids: state‐of‐the‐art, challenges, opportunities, and future directions. IET Smart Grid, 2(2), 141-154. https://doi.org/10.1049/iet-stg.2018.0261.
Lara, J. A., Lizcano, D., Martínez, M. A., Pazos, J., & Riera, T. (2014). A system for knowledge discovery in e-learning environments within the European higher education area— Application to student data from Open University of Madrid, UDIMA. Computers & Education, 72, 23–36. https://doi.org/10.1016/j.compedu.2013.10.009.
R Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/10.1002/widm.1355.
Akçapınar, G., Altun, A., & Aşkar, P. (2019). Using learning analytics to develop early-warning system for at-risk students. International Journal of Educational Technology in Higher Education, 16(1), 1-20. https://doi.org/10.1186/s41239-019-0172-z.
Oliveira, P. C. D., Cunha, C. J. C. D. A., & Nakayama, M. K. (2016). Learning Management Systems (LMS) and e-learning management: an integrative review and research agenda. JISTEM-Journal of Information Systems and Technology Management, 13, 157-180. https://doi.org/10.4301/S1807-17752016000200001.
Hong, W., & Bernacki, M. (2016). A prediction and early alert model using learning management system data and grounded in learning science theory. In Workshop and Tutorials Chairs (No. 182, p. 358).
Mwalumbwe, I., & Mtebe, J. S. (2017). Using learning analytics to predict students’ performance in Moodle learning management system: A case of Mbeya University of Science and Technology. The Electronic Journal of Information Systems in Developing Countries, 79(1), 1-13. https://doi.org/10.1002/j.1681-4835.2017.tb00577.x.
Edmunds, B., & Hartnett, M. (2014). Using a learning management system to personalise learning for primary school students. Journal of Open, Flexible and Distance Learning, 18(1), 11-29.
Machajewski, S., Steffen, A., Romero Fuerte, E., & Rivera, E. (2019). Patterns in faculty learning management system use. TechTrends, 63(5), 543-549. https://doi.org/10.1007/s11528-018-0327-0.
Liao, C. H., & Yen, H. R. (2012). Quantifying the degree of research collaboration: A comparative study of collaborative measures. Journal of Informetrics, 6(1), 27-33. https://doi.org/10.1016/j.joi.2011.09.003.
Ullah, M., Shahid, A., Roman, M., Assam, M., Fayaz, M., Ghadi, Y., & Aljuaid, H. (2022). Analyzing Interdisciplinary Research Using Coauthorship Networks. Complexity, 2022, https://doi.org/10.1155/2022/2524491.
Newman, M. E. (2001). The structure of scientific collaboration networks. Proceedings of the national academy of sciences, 98(2), 404-409. https://doi.org/10.1073/pnas.98.2.404.
Xie, Q., Zhang, X., Kim, G., & Song, M. (2022). Exploring the influence of coauthorship with top scientists on researchers’ affiliation, research topic, productivity, and impact. Journal of Informetrics, 16(3), 1013-14. https://doi.org/10.1016/j.joi.2022.101314.
Gui, Q., Liu, C., & Du, D. (2019). Globalization of science and international scientific collaboration: A network perspective. Geoforum, 105, 1-12. https://doi.org/10.1016/j.geoforum.2019.06.017.
Holcombe, A. O., Kovacs, M., Aust, F., & Aczel, B. (2020). Documenting contributions to scholarly articles using CrediT and ensing. PloS One, 15(12), e0244611. https://doi.org/10.1371/journal.pone.0244611.
Zhang, C., Bu, Y., Ding, Y., & Xu, J. (2018). Understanding scientific collaboration: Homophily, transitivity, and preferential attachment. Journal of the Association for Information Science and Technology, 69(1), 72-86. https://doi.org/10.1002/asi.23916.
Ferligoj, A., Kronegger, L., Mali, F., Snijders, T. A., & Doreian, P. (2015). Scientific collaboration dynamics in a national scientific system. Scientometrics, 104, 985-1012. https://doi.org/10.1007/s11192-015-1585-7.
Tsolakidis A., Sgouropoulou, C., Xydas, I., Terraz, O., & Miaoulis, G. (2011, September). Academic research policy-making and evaluation using graph visualisation. In 2011 15th Panhellenic Conference on Informatics (pp. 28-32). IEEE. https://doi.org/10.1109/PCI.2011.38.
Freeman, L. C. (1979). Centrality in social networks: Conceptual clarification. Social Networks, 1(3), 215-239. https://doi.org/10.1016/0378-8733(79)90002-9.
Freeman, L. C. (1977) A set of measures of centrality based on betweenness. Sociometry 40, 35-41. https://doi.org/10.2307/3033543.
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks. Nature, 393(6684), 440-442. https://doi.org/10.1038/30918.
Bonacich P. (2007). Some unique properties of eigenvector centrality. Social Networks, 29(4), 555-564. https://doi.org/10.1016/j.socnet.2007.04.002.
Lee, D. H., Seo, I. W., Choe, H. C., & Kim, H. D. (2012). Collaboration network patterns and research performance: the case of Korean public research institutions. Scientometrics, 91(3), 925-942. https://doi.org/10.1007/s11192-011-0602-8.
Moreno, A. A., & Tadepalli, R. (2002). Assessing academic department efficiency at a public university. Managerial and decision economics, 23(7), 385-397. https://doi.org/10.1002/mde.1075.
Lee, B. L., & Worthington, A. C. (2016). A network DEA quantity and quality-orientated production model: An application to Australian university research services. Omega, 60, 26-33. http://dx.doi.org/10.1016/j.omega.2015.05.014.
Agasisti, T., Catalano, G., Landoni, P., & Verganti, R. (2012). Evaluating the performance of academic departments: An analysis of research-related output efficiency. Research Evaluation, 21(1), 2-14. https://doi.org/10.1093/reseval/rvr001.
Hellenic Quality Assurance Agency, http://www.hqaa.gr/. Accessed April 2, 2023.
Cooper, W. W., Seiford, L. M., & Tone, K. (2007). Data envelopment analysis: a comprehensive text with models, applications, references and DEA-solver software (Vol. 2, p. 489). New York: Springer. https://doi.org/10.1007/978-0-387-45283-8.
Salloum, S. A., Alshurideh, M., Elnagar, A., & Shaalan, K. (2020). Mining in educational data: review and future directions. In Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020) (pp. 92-102). Springer International Publishing. https://doi.org/10.1007/978-3-030-44289-7_9.
Burgos, C., Campanario, M. L., de la Peña, D., Lara, J. A., Lizcano, D., & Martínez, M. A. (2018). Data mining for modeling students' performance: A tutoring action plan to prevent academic dropout. Computers & Electrical Engineering, 66, 541-556. https://doi.org/10.1016/j.compeleceng.2017.03.005.
Wu, J., & Wu, J. (2012). Cluster analysis and K-means clustering: an introduction. Advances in K-Means clustering: A data mining thinking, 1-16. https://doi.org/10.1007/978-3-642-29807-3_1.
Hegland, M. (2003). Algorithms for association rules. Advanced Lectures on Machine Learning. LNCS (LNAI), 2600, 226–234. Springer, Heidelberg. https://doi.org/10.1007/3-540-36434-X_7.
Guarin, C.E.L., Guzman, E.L., & Gonzalez, F.A. (2015). A model to predict low academic performance at a specific enrollment using data mining. Revista Iberoamericana de Tecnologias del Aprendizaje, 10(3), 119–125. https://doi.org/10.1109/RITA.2015.2452632.
Alkhasawneh, R., & Hobson, R. (2011, April). Modeling student retention in science and engineering disciplines using neural networks. In 2011 IEEE Global Engineering Education Conference (EDUCON) (pp. 660-663). IEEE. https://doi.org/10.1109/EDUCON.2011.5773209.
Al-Shehri, H., Al-Qarni, A., Al-Saati, L., Batoaq, A., Badukhen, H., Alrashed, S., & Olatunji, S. O. (2017, April). Student performance prediction using support vector machine and k-nearest neighbor. In 2017 IEEE 30th Canadian conference on electrical and computer engineering (CCECE) (pp. 1-4). IEEE.
https://doi.org/10.1109/CCECE.2017.7946847
Conijn, R., Snijders, C., Kleingeld, A., & Matzat, U. (2016). Predicting student performance from LMS data: A comparison of 17 blended courses using Moodle LMS. IEEE Transactions on Learning Technologies, 10(1), 17-29. https://doi.org/10.1109/TLT.2016.2616312.
García, M. T. C., & Montané-Jiménez, L. G. (2020, November). Visualization to support decision-making in cities: advances, technology, challenges, and opportunities. In 2020 8th International Conference in Software Engineering Research and Innovation (CONISOFT) (pp. 198-207). IEEE. https://doi.org/10.1109/CONISOFT50191.2020.00037
Wang, Y., Zheng, L., & Wang, Y. (2021). Event-driven tool condition monitoring methodology considering tool life prediction based on industrial internet. Journal of Manufacturing Systems, 58, 205-222. https://doi.org/10.1016/j.jmsy.2020.11.019.
Chen, C. (2004). Information visualization: Beyond the horizon. Springer Science & Business Media. https://doi.org/10.1007/1-84628-579-8.
Tsolakidis, A. (2014). Systèmes d'aide à l'évaluation à base de visualisation interactive de graphes. Applications à l'évaluation des systèmes et des institutions éducatives (Doctoral dissertation, Limoges). Available from URL : https://www.theses.fr/en/2014LIMO4011.
Chytas, K., Tsolakidis, A., Triperina, A., Skourlas, C. (2023) Educational data mining in the academic setting: employing the data produced by blended learning to ameliorate the learning process, Data Technologies and Applications, 1-19. https://doi.org/10.1108/DTA-06-2022-0252.
DOI: 10.26265/jiim.v7i2.4513
Refbacks
- There are currently no refbacks.