
 International Journal on Integrated Information Management
Vol.01 (2012) DOI: 10.15556/IJIIM.01.01.002

24

Efficient indexing methods in the data
mining context

Nikolaos Kouiroukidisa, Georgios Evangelidisa

a Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

Abstract: The proliferation of applications manipulating enormous sizes of
multidimensional vector data, that require indexing in order to support operations like kNN
searching in an efficient manner, has revived the interest in multidimensional indexing. It is
well established that as the dimensionality of data increases the performance of queries
such as range queries and nearest neighbor (1NN or kNN) queries decreases leading to a
problem described as “the curse of dimensionality”. In this paper we point out problems
that arise when indexing multidimensional data in fixed dimensions, such as 8 or 16,
because, usually, when dealing with data of higher dimensionality it is common to first
apply dimensionality reduction techniques such as principal component analysis. Although
there is a plethora of research papers proposing multidimensional indexing structures,
most of them report empirical results with relatively small and low dimensionality datasets.
We attempt a fair comparison of many state of the art indexing structures designed
exclusively to index multi-dimensional points like the Hybrid tree, the iDistance and the
P+tree. We include in our comparison the R*tree, a state of the art index designed both for
multidimensional points and regions. It is an improvement of the well-known R-tree, and
also has been revised and improved further recently. We compare the behavior of the
indexes on kNN queries (for k=1 and k=10) with varying dataset sizes and dimensionality.
Our goal is to determine the structure(s) that could be used efficiently in the area of data
mining. We obtained the source code of the implementations of the related structures from
the authors and the R-tree portal.

Keywords: Multidimensional Indexing, Data Mining

1. Introduction

In the last 25 years many indexing techniques have been proposed for the efficient
storage and retrieval of multidimensional data. For the one-dimensional case, the
ubiquitous B+tree [7] has been incorporated in all commercial and open source
database management systems. Many more sophisticated data structures have been
proposed to handle the problem of manipulating in an efficient manner enormous
sizes of multidimensional data. Most of them try to solve problems concerning range
queries and k nearest neighbor (kNN) queries. Difficulties arise in higher dimensions
where the problem of the so called “dimensionality curse” has the effect that the
higher the dimension in question the more these index structures behave like or
even worse than the sequential scan in solving problems like similarity search
queries.

INTERNATIONAL JOURNAL ON INTEGRATED INFORMATION MANAGEMENT 25

These indexing methods usually take advantage of many factors like the
manner that space is occupied by the data in question or some characteristics of the
way that data space is decomposed that can lead to translating the
multidimensional problem into a single-dimensional one that can be efficiently
handled by a B+tree. First, we survey some of the most notable indexing structures
that have been proposed in the literature, especially the R*tree [1] (successor of R-
tree), the Hybrid tree [3], the P+tree [6] and the iDistance [7], and then we try to
study and investigate through experimentation various factors that influence these
indexes when used to solve kNN queries. These factors are the data dimensionality
and the size of the indexed data that usually arise in real world datasets.

The paper is organized as follows. In Section 2, we introduce the index
structures we will examine, and in Section 3 we discuss the experiments that have
been conducted using these methods. In Section 4, we present our experiments,
and, finally, we conclude the paper in Section 5.

2. Review of Popular Multidimensional Indexes

2.1. Hybrid Tree

This indexing structure is characterized by the space partitioning strategy that is
employed when a node splits and it supports distance-based queries (both range
and nearest neighbor). It is more similar to Space Partitioning (SP-) Based data
structures than Data Partitioning (DP-) Based data structures. As the authors state,
the overlap is allowed only when trying to achieve an overlap-free split would cause
downward cascading splits and hence a possible violation of utilization constraints.
The space partitioning within each index node is accomplished with a k-d tree. Each
internal node of the regular kd-tree represents a split by storing the split dimension
and the split position. The novelty is that there are two split positions in the kd-tree
internal node of the Hybrid tree. The first split position represents the right (higher
side) boundary of the left (lower side) partition while the second split position
represents the left boundary of the right partition.

When splitting a data node the Hybrid tree chooses as the split dimension the
one that minimizes the increase in EDA (expected number of disk accesses per
query), thereby optimizing the expected search performance for future queries and
the split position is determined as close to the middle as possible along the specified
split dimension. This tends to produce more cubic BRs (Bounding Rectangles) and
hence ones with smaller surface areas. The smaller the surface area, the lower the
probability that a range query overlaps with that BR, the lower the number of
expected number of disk accesses.

Unlike data node splitting where the choice is independent of the query size, the
choice of the split dimension for index nodes depends on the probability distribution
of the query size. For splitting an index node the Hybrid tree chooses the dimension
that minimizes the increase in EDA averaged over all queries. Given the split
dimension, the split positions are chosen such that the overlap is minimized without
violating the utilization requirement.

In addition, the Hybrid tree indexes empty space using the Encoded Live Space
(ELS) Optimization using a few bits. The Hybrid tree is completely dynamic with
insertions, deletions and updates that occur interspersed with search queries
without requiring any reorganization.

EFFICIENT INDEXING METHODS IN THE DATA MINING CONTEXT 26

2.2. P+Tree

This index structure first divides the data space into clusters that are essentially
hyper-rectangles. Then it transforms each subspace into a hypercube and applies
the pyramid technique [2] in each subspace. The number of subspaces is always an
integral power of 2. The order of Division is defined as the times we divide the space
and it is an important parameter of the P+tree. To facilitate the building process of
the P+tree and query processing, there is an auxiliary structure called the space-
tree, which is built during the space division process. The space-tree is similar to the
k-d tree, but it stores the transformation information instead of data points in the
leaf nodes. For the construction phase, a P+-tree is basically a B+-tree where the
data records with their keys are stored in the leaf nodes.

In the P+-tree, the authors apply the pyramid technique in each subspace.
Under the pyramid technique, pyramid values of points in pyramid i cover the
interval [i, i + 0.5]. There are 2d pyramids, from pyramid 0 to pyramid 2d - 1, so
pyramid values of all points are within the interval [0, 2d). To discriminate points
from different subspaces, SNo * 2d is added, where SNo is the number of subspaces.
Window queries Q are processed in two logical phases. First, clusters that intersect
Q are determined so that the rest of the clusters can be pruned, and second, the
transformed query T(Q) is applied on the transformed subspaces. For kNN queries, a
hypercube-shaped window query centered at x is initiated with an initial side length,
which is typically small. Then the side length increases gradually until we are sure
that the kNNs are found.

2.3. iDistance

The design of iDistance was motivated by the following observations. First, the
(dis)similarity between data points can be derived with reference to a chosen
reference or representative point. Second, data points can be ordered based on their
distances to a reference point. Third, distance is essentially a single dimensional
value. This maps high-dimensional data in single dimensional space, thereby
enabling reuse of existing single dimensional indexes such as the B+tree. Moreover,
false drops can be efficiently filtered out without incurring expensive distance
computation. The transformation of high-dimensional points to single dimensional
points is done using a three-step algorithm. In the first step, the high-dimensional
data space is split into a set of partitions. In the second step, a reference point is
found for each partition. Suppose that we have m partitions, P0 , P1 , . . . , Pm-1 and
their corresponding reference points, O0 , O1 , . . . , Om-1 . Finally, in the third step,
all data points are represented in a single dimensional space as follows. A data point
p : (x0 , x1 , . . . , xd-1), 0 ≤ xj ≤ 1, 0 ≤ j < d, has an index key, y, based on the
distance from the nearest reference point Oi as follows:

y = i × c + dist(p, Oi)
where c is a constant used to stretch the data ranges. Essentially, c serves to
partition the single dimension space into regions so that all points in partition Pi are
mapped to the range [i × c, (i + 1) × c).

For a kNN query centered at q, a range query with radius r is issued. The
iDistance kNN search algorithm searches the index from the query point outwards,
and for each partition that intersects with the query sphere, a range query is issued.
If the algorithm finds k elements that are closer than r from q at the end of the
search, the algorithm terminates. Otherwise, it extends the search radius by ∆r and
the process is repeated till the stopping condition is satisfied.

INTERNATIONAL JOURNAL ON INTEGRATED INFORMATION MANAGEMENT 27

2.4. R*-tree

The R*-tree is a data partitioning structure that indexes MBRs (minimum bounding
rectangles). The minimization of both coverage and overlap of the MBRs influences
the performance of R* tree. When overlap occurs on data query or insertion, more
than one branch of the tree needs to be expanded and traversed (due to storage
redundancy). When the coverage is minimized this has the effect of improving
pruning performance, so whole pages are excluded from search more often.

The R*-tree attempts to reduce both, with a combination of a revised node split
algorithm and the concept of forced reinsertion when nodes overflow. This is based
on the observation that R-tree structures are highly sensitive to the order in which
their entries are inserted, so an insertion-built (rather than bulk-loaded) structure is
likely to be sub-optimal. So the deletion and reinsertion of some entries allows them
to "find" a place in the tree that may be more appropriate than their original
location. When a node overflows, a portion of its entries are removed from the node
and reinserted into the tree. This produces better- clustered groups of entries in
nodes, with the effect that node coverage is reduced. Furthermore, actual node splits
are often postponed, causing average node occupancy to become higher. Re-
insertion can be seen as a method of incremental tree optimization triggered on node
overflow.

3. Previous experiments

In this section we present the experiments that have been carried out during the
evaluation of the above-mentioned index structures in the corresponding original
papers. The experiments vary in terms of the chosen dimensionality, dataset size,
page size, and type of queries tested. For example, the Hybrid tree was tested
against the SR-tree [10], the hB-tree [4] and the sequential scan, the P+- tree against
the pyramid technique, iMinMax [5] and the sequential scan, iDistance against the
iMinMax, the A-tree [9], and the linear scan, and, finally, the R*-tree against other
R-tree variations and the GRID file [11].

The summary of the experiments that were carried out by the authors is
illustrated in Table 1. We notice that there is no common framework to compare all
four indexes and draw conclusions regarding their performance on kNN queries. In
the following section we describe our approach in comparing the four indexes.

 33

traversed (due to storage redundancy). When the coverage is minimized this
has the effect of improving pruning performance, so whole pages are excluded
from search more often.

The R*-tree attempts to reduce both, with a combination of a revised node
split algorithm and the concept of forced reinsertion when nodes overflow. This
is based on the observation that R-tree structures are highly sensitive to the order
in which their entries are inserted, so an insertion-built (rather than bulk-loaded)
structure is likely to be sub-optimal. So the deletion and reinsertion of some
entries allows them to "find" a place in the tree that may be more appropriate
than their original location. When a node overflows, a portion of its entries are
removed from the node and reinserted into the tree. This produces better-
clustered groups of entries in nodes, with the effect that node coverage is
reduced. Furthermore, actual node splits are often postponed, causing average
node occupancy to become higher. Re-insertion can be seen as a method of
incremental tree optimization triggered on node overflow.

3. Previous experiments

In this section we present the experiments that have been carried out during the
evaluation of the above-mentioned index structures in the corresponding original
papers. The experiments vary in terms of the chosen dimensionality, dataset
size, page size, and type of queries tested. For example, the Hybrid tree was
tested against the SR-tree [10], the hB-tree [4] and the sequential scan, the P+-
tree against the pyramid technique, iMinMax [5] and the sequential scan,
iDistance against the iMinMax, the A-tree [9], and the linear scan, and, finally,
the R*-tree against other R-tree variations and the GRID file [11].

The summary of the experiments that were carried out by the authors is
illustrated in Table 1. We notice that there is no common framework to compare
all four indexes and draw conclusions regarding their performance on kNN
queries. In the following section we describe our approach in comparing the four
indexes.

Table 1: Comparison of index structures regarding previous experimental analysis

 Index indexes
compared

Size
Dimensionality

distribution Block
size

Range Query KNN-
query

1 R* tree quadratic split
Rtree, linear
split Rtree,
Greene's Rtree

100000 2d uniform,
clustered,
parcel, real,
gaussian,
mixed uniform

1024
bytes

rectangle
intersection

-

EFFICIENT INDEXING METHODS IN THE DATA MINING CONTEXT 28

4. Experimental Evaluation

We conducted a series of experiments on the four indexing structures using for each
one implementation code provided by the authors. We varied certain parameters like
the dimensionality, the data set size, and the parameter k in kNN queries, as well as
parameters that are unique in each of the participating indexing structures like the
number of clusters in iDistance or the order of Division in P+-tree.
Regarding the R*-tree, we used the C++ implementation by Hans-Peter Kriegel's
group obtained from the R-tree portal site. We had to make major changes to the
original code in order to compile it with the g++ 4.3.2 compiler running under Linux.
Our system was a modest one, having one Intel Pentium 4 CPU running at 1.8 GHz
with 2GB RAM.

Our purpose was to run experiments with very large data sets with more than
100.000.000 points each, but the creation of indexes of some of the tested indexing
data structures, namely, the R*-tree and the Hybrid tree in 16-d data sets proved to
be a very lengthy operation. For example, it took one day to create an R*-tree with
16.000.000 points. So, we decided to test all index structures with smaller data sets
and achieve a unified view of their performance. The page size was set to all of the
competing indexing structures to 4096 bytes and the k value in the kNN search
algorithm was set to 1 and 10 for both of the 8 and 16 dimension cases that we
tested. The number of clusters in the iDistance method was set to 64 in all the
experiments, and the order of division parameter in the P+-tree implementation was
set to 4 in all the experiments. We implemented a simple data generator for the
experiments. Finally, because the P+-tree implements only window queries, we had
to experiment for the appropriate side length of the window query so that correct
average answers of 1 and 10 NN points could be computed accounting for 8 and 16
dimensions.

Table 2 shows the time required to build the indexes for varying dimensionality
and dataset size. iDistance does not provide us with such information. We observe
that the Hybrid tree is about an order of magnitude faster than the rest of the
methods. All methods scale linearly to both the dimensionality and the dataset size.

 34

2 Hybrid
tree

SR tree, hB-
tree, Sequential
Scan

1.2 million 16d
70K-16,32,64d

fourier datasets
collhist dataset

4096
bytes

Selectivity
0,07% Fourier
0,2%
COLHIST

-

3 P+ tree Pyramid,
iminmax

581012 10d
68040 32d
500000 16d32d

real data set
real data set
clustered

4096
bytes

- 2-10-NN

4 IDistanc
e

M tree,Omni
Seq.Scan,
Arya's bbd tree

100000 to
500000 of
8,16,30 dim

uniform &
clustered

4096
bytes

- 10-50NN

4. Experimental Evaluation

We conducted a series of experiments on the four indexing structures using for
each one implementation code provided by the authors. We varied certain
parameters like the dimensionality, the data set size, and the parameter k in kNN
queries, as well as parameters that are unique in each of the participating
indexing structures like the number of clusters in iDistance or the order of
Division in P+-tree.

Regarding the R*-tree, we used the C++ implementation by Hans-Peter
Kriegel's group obtained from the R-tree portal site. We had to make major
changes to the original code in order to compile it with the g++ 4.3.2 compiler
running under Linux. Our system was a modest one, having one Intel Pentium 4
CPU running at 1.8 GHz with 2GB RAM.

Our purpose was to run experiments with very large data sets with more
than 100.000.000 points each, but the creation of indexes of some of the tested
indexing data structures, namely, the R*-tree and the Hybrid tree in 16-d data
sets proved to be a very lengthy operation. For example, it took one day to
create an R*-tree with 16.000.000 points. So, we decided to test all index
structures with smaller data sets and achieve a unified view of their
performance. The page size was set to all of the competing indexing structures
to 4096 bytes and the k value in the kNN search algorithm was set to 1 and 10
for both of the 8 and 16 dimension cases that we tested. The number of clusters
in the iDistance method was set to 64 in all the experiments, and the order of
division parameter in the P+-tree implementation was set to 4 in all the
experiments. We implemented a simple data generator for the experiments.
Finally, because the P+-tree implements only window queries, we had to
experiment for the appropriate side length of the window query so that correct

 35

average answers of 1 and 10 NN points could be computed accounting for 8
and 16 dimensions.

Table 2 shows the time required to build the indexes for varying
dimensionality and dataset size. iDistance does not provide us with such
information. We observe that the Hybrid tree is about an order of magnitude
faster than the rest of the methods. All methods scale linearly to both the
dimensionality and the dataset size.

Table 2: Index build time (real time in secs)

 DIM=8 DIM=16
 100K 200K 300K 100K 200K 300K

R* tree 77 159 237 148 299 448
Hybrid tree 4 10 13 13 28 45

P+ tree 47 107 167 78 153 268

Regarding the size of the created indexes, iDistance and P+ tree are
essentially B+-trees and the code we obtained does not compute the relevant
statistics. The R*-tree and the Hybrid tree report similar results, with the Hybrid
tree showing increased storage requirements as the dataset size increases, as
shown in Table 3.

Table 3: Index size in pages

 Dim=8 Dim=16

 100K 200K 300K 100K 200K 300K
R* tree 1516 3035 4552 2942 5883 8824

Hybrid tree 1111 2213 4155 2242 4457 8099

Table 4 reveals that the Hybrid tree, although it is a true multidimensional
index, has the smallest average page I/O when dealing with 1NN queries, and it
is insensitive to dimensionality. The P+tree has also very good performance due
to the fast searching time of the B+-tree that it employs.

Table 4: Average page I/O for 1NN

K=1 Dim=8 Dim=16

 100K 200K 300K 100K 200K 300K
R* tree 16 22 40 987 1226 1452

Hybrid tree 3 9 10 3 9 10
iDistance 176 202 231 908 1125 1262

P+ tree 3 10 22 3 36 63

INTERNATIONAL JOURNAL ON INTEGRATED INFORMATION MANAGEMENT 29

Regarding the size of the created indexes, iDistance and P+ tree are essentially
B+-trees and the code we obtained does not compute the relevant statistics. The R*-
tree and the Hybrid tree report similar results, with the Hybrid tree showing
increased storage requirements as the dataset size increases, as shown in Table 3.

Table 4 reveals that the Hybrid tree, although it is a true multidimensional

index, has the smallest average page I/O when dealing with 1NN queries, and it is
insensitive to dimensionality. The P+tree has also very good performance due to the
fast searching time of the B+-tree that it employs.

On the other hand, iDistance appears to be more insensitive to the increase in
dataset size and dimensionality that the R*-tree. The R*-tree has the worst
performance in high dimensions, but performs well in low dimensionality. In the
experiments we used comparable buffer sizes for all methods.

Table 5 shows that when dealing with 10NN queries, the P+tree has the best
overall performance. For such queries, the Hybrid tree joins the R*-tree regarding
the deterioration in performance in high dimensions. On the other hand, iDistance
has the worst performance in low dimensionality, but is comparable to the R*-tree
and Hybrid tree in higher dimensions.

Finally, in Table 6 and Table 7 we show the query times for the R*-tree and the
Hybrid tree in the case of 1NN and 10NN queries. We do not report the times for the
rest of the methods that use B+-trees because they are almost zero. The Hybrid tree
has a very good behavior, comparable to the P+-tree and the iDistance, although it is
a true multidimensional index. The R*-tree has the worst performance.

 35

average answers of 1 and 10 NN points could be computed accounting for 8
and 16 dimensions.

Table 2 shows the time required to build the indexes for varying
dimensionality and dataset size. iDistance does not provide us with such
information. We observe that the Hybrid tree is about an order of magnitude
faster than the rest of the methods. All methods scale linearly to both the
dimensionality and the dataset size.

Table 2: Index build time (real time in secs)

 DIM=8 DIM=16
 100K 200K 300K 100K 200K 300K

R* tree 77 159 237 148 299 448
Hybrid tree 4 10 13 13 28 45

P+ tree 47 107 167 78 153 268

Regarding the size of the created indexes, iDistance and P+ tree are
essentially B+-trees and the code we obtained does not compute the relevant
statistics. The R*-tree and the Hybrid tree report similar results, with the Hybrid
tree showing increased storage requirements as the dataset size increases, as
shown in Table 3.

Table 3: Index size in pages

 Dim=8 Dim=16

 100K 200K 300K 100K 200K 300K
R* tree 1516 3035 4552 2942 5883 8824

Hybrid tree 1111 2213 4155 2242 4457 8099

Table 4 reveals that the Hybrid tree, although it is a true multidimensional
index, has the smallest average page I/O when dealing with 1NN queries, and it
is insensitive to dimensionality. The P+tree has also very good performance due
to the fast searching time of the B+-tree that it employs.

Table 4: Average page I/O for 1NN

K=1 Dim=8 Dim=16

 100K 200K 300K 100K 200K 300K
R* tree 16 22 40 987 1226 1452

Hybrid tree 3 9 10 3 9 10
iDistance 176 202 231 908 1125 1262

P+ tree 3 10 22 3 36 63

 36

On the other hand, iDistance appears to be more insensitive to the
increase in dataset size and dimensionality that the R*-tree. The R*-tree has the
worst performance in high dimensions, but performs well in low dimensionality.
In the experiments we used comparable buffer sizes for all methods.

Table 5 shows that when dealing with 10NN queries, the P+tree has the best
overall performance. For such queries, the Hybrid tree joins the R*-tree
regarding the deterioration in performance in high dimensions. On the other
hand, iDistance has the worst performance in low dimensionality, but is
comparable to the R*-tree and Hybrid tree in higher dimensions.

Table 5: Average page I/O for 10NN

 K=10 Dim=8 Dim=16

 100K 200K 300K 100K 200K 300K
R* tree 41 56 67 1695 1818 2046

Hybrid tree 20 32 54 1604 1815 2012

iDistance 362 402 476 1789 1920 2146

P+ tree 10 36 31 687 1007 1399

Finally, in Table 6 and Table 7 we show the query times for the R*-tree and

the Hybrid tree in the case of 1NN and 10NN queries. We do not report the
times for the rest of the methods that use B+-trees because they are almost zero.
The Hybrid tree has a very good behavior, comparable to the P+-tree and the
iDistance, although it is a true multidimensional index. The R*-tree has the
worst performance.

Table 6: 1NN queries execution times (real time in secs)

 K=1 Dim=8 Dim=16

 100K 200K 300K 100K 200K 300K
R* tree 1,5 3 4,49 1,9 3,86 5,69

Hybrid tree 0 0 0 0,08 0,11 0,08

Table 7: 10NN queries execution times (real time in secs)

 K=10 Dim=8 Dim=16

 100K 200K 300K 100K 200K 300K
R* tree 1,57 3,12 4,7 1,94 3,88 6,04

Hybrid tree 0 0 0 0,17 0,23 0,25

 35

average answers of 1 and 10 NN points could be computed accounting for 8
and 16 dimensions.

Table 2 shows the time required to build the indexes for varying
dimensionality and dataset size. iDistance does not provide us with such
information. We observe that the Hybrid tree is about an order of magnitude
faster than the rest of the methods. All methods scale linearly to both the
dimensionality and the dataset size.

Table 2: Index build time (real time in secs)

 DIM=8 DIM=16
 100K 200K 300K 100K 200K 300K

R* tree 77 159 237 148 299 448
Hybrid tree 4 10 13 13 28 45

P+ tree 47 107 167 78 153 268

Regarding the size of the created indexes, iDistance and P+ tree are
essentially B+-trees and the code we obtained does not compute the relevant
statistics. The R*-tree and the Hybrid tree report similar results, with the Hybrid
tree showing increased storage requirements as the dataset size increases, as
shown in Table 3.

Table 3: Index size in pages

 Dim=8 Dim=16

 100K 200K 300K 100K 200K 300K
R* tree 1516 3035 4552 2942 5883 8824

Hybrid tree 1111 2213 4155 2242 4457 8099

Table 4 reveals that the Hybrid tree, although it is a true multidimensional
index, has the smallest average page I/O when dealing with 1NN queries, and it
is insensitive to dimensionality. The P+tree has also very good performance due
to the fast searching time of the B+-tree that it employs.

Table 4: Average page I/O for 1NN

K=1 Dim=8 Dim=16

 100K 200K 300K 100K 200K 300K
R* tree 16 22 40 987 1226 1452

Hybrid tree 3 9 10 3 9 10
iDistance 176 202 231 908 1125 1262

P+ tree 3 10 22 3 36 63

EFFICIENT INDEXING METHODS IN THE DATA MINING CONTEXT 30

Acknowledgements

We thank the authors for providing us with the code of the implementations of the
relevant indexing methods namely R* tree, Hybrid tree, P+ tree and iDistance.

References

[1] Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B. (1990). The R*-tree:
An efficient and robust access method for points and rectangles. In Proc.
SIGMOD..

[2] Berchtold, S., Bohm, C., and Kriegel, H.-P. (1998). The pyramid- technique:
Towards breaking the curse of dimensionality. In Proc. SIGMOD.

[3] Chakrabarti, K. and Mehrotra, S. (1999). The hybrid tree: An index structure for
high dimensional feature spaces. In Proc. International Conference on Data
Engineering, pp. 322–331.

[4] Lomet, D.B. and Salzberg, B. (1990). The hB-tree: a multiattribute indexing
method with good guaranteed performance. ACM TODS, 15(4), pp. 625-658.

[5] Ooi, B.C., Tan, K.L., Yu, C., and Bressan, S. (2000). Indexing the edge: a simple
and yet efficient approach to high-dimensional indexing. In Proc. ACM PODS, pp.
166–174.

[6] Zhang, R., Ooi, B.C., and Tan, K-L. (2004). Making the Pyramid Technique
Robust to Query Types and Workloads. In Proc. ICDE, pp. 313-324.

[7] Yu, C., Ooi, B.C., Tan, K.L., and Jagadish, H. (2001). Indexing the distance: an
efficient method to knn processing. In Proc. International Conference on Very
Large Data Bases, pp. 421–430.

[8] Comer, D. (1979). The Ubiquitous B-Tree. ACM Computing Surveys, 11(2), pp.
121–137.

[9] Sakurai, Y., Yoshikawa, M., Uemura, S., and Kojima, H. (2000). The A-tree: An
Index Structure for High-Dimensional Spaces Using Relative Approximation. In
Proc. International Conference on Very Large Data Bases, pp. 516-526.

[10] Katayama, N. and Satoh, S. (1998). SR-tree: An index structure for nearest-
neighbor searching of high-dimensional point data. Systems and Computers in
Japan, 29(6), pp. 59-73.

[11] Nievergelt, J., Hinterberger, and H., Sevcik, K.C. (1984). The Grid File: An
Adaptable, Symmetric Multikey File Structure. ACM Trans. Database Syst., 9(1),
pp. 38-71.

 36

On the other hand, iDistance appears to be more insensitive to the
increase in dataset size and dimensionality that the R*-tree. The R*-tree has the
worst performance in high dimensions, but performs well in low dimensionality.
In the experiments we used comparable buffer sizes for all methods.

Table 5 shows that when dealing with 10NN queries, the P+tree has the best
overall performance. For such queries, the Hybrid tree joins the R*-tree
regarding the deterioration in performance in high dimensions. On the other
hand, iDistance has the worst performance in low dimensionality, but is
comparable to the R*-tree and Hybrid tree in higher dimensions.

Table 5: Average page I/O for 10NN

 K=10 Dim=8 Dim=16

 100K 200K 300K 100K 200K 300K
R* tree 41 56 67 1695 1818 2046

Hybrid tree 20 32 54 1604 1815 2012

iDistance 362 402 476 1789 1920 2146

P+ tree 10 36 31 687 1007 1399

Finally, in Table 6 and Table 7 we show the query times for the R*-tree and

the Hybrid tree in the case of 1NN and 10NN queries. We do not report the
times for the rest of the methods that use B+-trees because they are almost zero.
The Hybrid tree has a very good behavior, comparable to the P+-tree and the
iDistance, although it is a true multidimensional index. The R*-tree has the
worst performance.

Table 6: 1NN queries execution times (real time in secs)

 K=1 Dim=8 Dim=16

 100K 200K 300K 100K 200K 300K
R* tree 1,5 3 4,49 1,9 3,86 5,69

Hybrid tree 0 0 0 0,08 0,11 0,08

Table 7: 10NN queries execution times (real time in secs)

 K=10 Dim=8 Dim=16

 100K 200K 300K 100K 200K 300K
R* tree 1,57 3,12 4,7 1,94 3,88 6,04

Hybrid tree 0 0 0 0,17 0,23 0,25

