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Abstract: The proliferation of applications manipulating enormous sizes of 
multidimensional vector data, that require indexing in order to support operations like kNN 
searching in an efficient manner, has revived the interest in multidimensional indexing. It is 
well established that as the dimensionality of data increases the performance of queries 
such as range queries and nearest neighbor (1NN or kNN) queries decreases leading to a 
problem described as “the curse of dimensionality”. In this paper we point out problems 
that arise when indexing multidimensional data in fixed dimensions, such as 8 or 16, 
because, usually, when dealing with data of higher dimensionality it is common to first 
apply dimensionality reduction techniques such as principal component analysis. Although 
there is a plethora of research papers proposing multidimensional indexing structures, 
most of them report empirical results with relatively small and low dimensionality datasets. 
We attempt a fair comparison of many state of the art indexing structures designed 
exclusively to index multi-dimensional points like the Hybrid tree, the iDistance and the 
P+tree. We include in our comparison the R*tree, a state of the art index designed both for 
multidimensional points and regions. It is an improvement of the well-known R-tree, and 
also has been revised and improved further recently. We compare the behavior of the 
indexes on kNN queries (for k=1 and k=10) with varying dataset sizes and dimensionality. 
Our goal is to determine the structure(s) that could be used efficiently in the area of data 
mining. We obtained the source code of the implementations of the related structures from 
the authors and the R-tree portal. 
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1.   Introduction 

In the last 25 years many indexing techniques have been proposed for the efficient 
storage and retrieval of multidimensional data. For the one-dimensional case, the 
ubiquitous B+tree [7] has been incorporated in all commercial and open source 
database management systems. Many more sophisticated data structures have been 
proposed to handle the problem of manipulating in an efficient manner enormous 
sizes of multidimensional data. Most of them try to solve problems concerning range 
queries and k nearest neighbor (kNN) queries. Difficulties arise in higher dimensions 
where the problem of the so called “dimensionality curse” has the effect that the 
higher the dimension in question the more these index structures behave like or 
even worse than the sequential scan in solving problems like similarity search 
queries. 
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These indexing methods usually take advantage of many factors like the 
manner that space is occupied by the data in question or some characteristics of the 
way that data space is decomposed that can lead to translating the 
multidimensional problem into a single-dimensional one that can be efficiently 
handled by a B+tree. First, we survey some of the most notable indexing structures 
that have been proposed in the literature, especially the R*tree [1] (successor of R-
tree), the Hybrid tree [3], the P+tree [6] and the iDistance [7], and then we try to 
study and investigate through experimentation various factors that influence these 
indexes when used to solve kNN queries. These factors are the data dimensionality 
and the size of the indexed data that usually arise in real world datasets. 

The paper is organized as follows. In Section 2, we introduce the index 
structures we will examine, and in Section 3 we discuss the experiments that have 
been conducted using these methods. In Section 4, we present our experiments, 
and, finally, we conclude the paper in Section 5. 
 

2.   Review of Popular Multidimensional Indexes 

2.1.   Hybrid Tree 

This indexing structure is characterized by the space partitioning strategy that is 
employed when a node splits and it supports distance-based queries (both range 
and nearest neighbor). It is more similar to Space Partitioning (SP-) Based data 
structures than Data Partitioning (DP-) Based data structures. As the authors state, 
the overlap is allowed only when trying to achieve an overlap-free split would cause 
downward cascading splits and hence a possible violation of utilization constraints. 
The space partitioning within each index node is accomplished with a k-d tree. Each 
internal node of the regular kd-tree represents a split by storing the split dimension 
and the split position. The novelty is that there are two split positions in the kd-tree 
internal node of the Hybrid tree. The first split position represents the right (higher 
side) boundary of the left (lower side) partition while the second split position 
represents the left boundary of the right partition. 

When splitting a data node the Hybrid tree chooses as the split dimension the 
one that minimizes the increase in EDA (expected number of disk accesses per 
query), thereby optimizing the expected search performance for future queries and 
the split position is determined as close to the middle as possible along the specified 
split dimension. This tends to produce more cubic BRs (Bounding Rectangles) and 
hence ones with smaller surface areas. The smaller the surface area, the lower the 
probability that a range query overlaps with that BR, the lower the number of 
expected number of disk accesses. 

Unlike data node splitting where the choice is independent of the query size, the 
choice of the split dimension for index nodes depends on the probability distribution 
of the query size. For splitting an index node the Hybrid tree chooses the dimension 
that minimizes the increase in EDA averaged over all queries. Given the split 
dimension, the split positions are chosen such that the overlap is minimized without 
violating the utilization requirement. 

In addition, the Hybrid tree indexes empty space using the Encoded Live Space 
(ELS) Optimization using a few bits. The Hybrid tree is completely dynamic with 
insertions, deletions and updates that occur interspersed with search queries 
without requiring any reorganization. 
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2.2.   P+Tree 

This index structure first divides the data space into clusters that are essentially 
hyper-rectangles. Then it transforms each subspace into a hypercube and applies 
the pyramid technique [2] in each subspace. The number of subspaces is always an 
integral power of 2. The order of Division is defined as the times we divide the space 
and it is an important parameter of the P+tree. To facilitate the building process of 
the P+tree and query processing, there is an auxiliary structure called the space-
tree, which is built during the space division process. The space-tree is similar to the 
k-d tree, but it stores the transformation information instead of data points in the 
leaf nodes. For the construction phase, a P+-tree is basically a B+-tree where the 
data records with their keys are stored in the leaf nodes. 

In the P+-tree, the authors apply the pyramid technique in each subspace. 
Under the pyramid technique, pyramid values of points in pyramid i cover the 
interval [i, i + 0.5]. There are 2d pyramids, from pyramid 0 to pyramid 2d - 1, so 
pyramid values of all points are within the interval [0, 2d). To discriminate points 
from different subspaces, SNo * 2d is added, where SNo is the number of subspaces. 
Window queries Q are processed in two logical phases. First, clusters that intersect 
Q are determined so that the rest of the clusters can be pruned, and second, the 
transformed query T(Q) is applied on the transformed subspaces. For kNN queries, a 
hypercube-shaped window query centered at x is initiated with an initial side length, 
which is typically small. Then the side length increases gradually until we are sure 
that the kNNs are found. 

2.3.   iDistance 

The design of iDistance was motivated by the following observations. First, the 
(dis)similarity between data points can be derived with reference to a chosen 
reference or representative point. Second, data points can be ordered based on their 
distances to a reference point. Third, distance is essentially a single dimensional 
value. This maps high-dimensional data in single dimensional space, thereby 
enabling reuse of existing single dimensional indexes such as the B+tree. Moreover, 
false drops can be efficiently filtered out without incurring expensive distance 
computation. The transformation of high-dimensional points to single dimensional 
points is done using a three-step algorithm. In the first step, the high-dimensional 
data space is split into a set of partitions. In the second step, a reference point is 
found for each partition. Suppose that we have m partitions, P0 , P1 , . . . , Pm-1 and 
their corresponding reference points, O0 , O1 , . . . , Om-1 . Finally, in the third step, 
all data points are represented in a single dimensional space as follows. A data point 
p : (x0 , x1 , . . . , xd-1 ), 0 ≤ xj ≤ 1, 0 ≤ j < d, has an index key, y, based on the 
distance from the nearest reference point Oi as follows: 

y = i × c + dist(p, Oi ) 
where c is a constant used to stretch the data ranges. Essentially, c serves to 
partition the single dimension space into regions so that all points in partition Pi are 
mapped to the range [i × c, (i + 1) × c). 

For a kNN query centered at q, a range query with radius r is issued. The 
iDistance kNN search algorithm searches the index from the query point outwards, 
and for each partition that intersects with the query sphere, a range query is issued. 
If the algorithm finds k elements that are closer than r from q at the end of the 
search, the algorithm terminates. Otherwise, it extends the search radius by ∆r and 
the process is repeated till the stopping condition is satisfied. 
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2.4.   R*-tree 

The R*-tree is a data partitioning structure that indexes MBRs (minimum bounding 
rectangles). The minimization of both coverage and overlap of the MBRs influences 
the performance of R* tree. When overlap occurs on data query or insertion, more 
than one branch of the tree needs to be expanded and traversed (due to storage 
redundancy). When the coverage is minimized this has the effect of improving 
pruning performance, so whole pages are excluded from search more often. 

The R*-tree attempts to reduce both, with a combination of a revised node split 
algorithm and the concept of forced reinsertion when nodes overflow. This is based 
on the observation that R-tree structures are highly sensitive to the order in which 
their entries are inserted, so an insertion-built (rather than bulk-loaded) structure is 
likely to be sub-optimal. So the deletion and reinsertion of some entries allows them 
to "find" a place in the tree that may be more appropriate than their original 
location. When a node overflows, a portion of its entries are removed from the node 
and reinserted into the tree. This produces better- clustered groups of entries in 
nodes, with the effect that node coverage is reduced. Furthermore, actual node splits 
are often postponed, causing average node occupancy to become higher. Re-
insertion can be seen as a method of incremental tree optimization triggered on node 
overflow. 

3.   Previous experiments 

In this section we present the experiments that have been carried out during the 
evaluation of the above-mentioned index structures in the corresponding original 
papers. The experiments vary in terms of the chosen dimensionality, dataset size, 
page size, and type of queries tested. For example, the Hybrid tree was tested 
against the SR-tree [10], the hB-tree [4] and the sequential scan, the P+- tree against 
the pyramid technique, iMinMax [5] and the sequential scan, iDistance against the 
iMinMax, the A-tree [9], and the linear scan, and, finally, the R*-tree against other 
R-tree variations and the GRID file [11]. 

The summary of the experiments that were carried out by the authors is 
illustrated in Table 1. We notice that there is no common framework to compare all 
four indexes and draw conclusions regarding their performance on kNN queries. In 
the following section we describe our approach in comparing the four indexes. 
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tree against the pyramid technique, iMinMax [5] and the sequential scan, 
iDistance against the iMinMax, the A-tree [9], and the linear scan, and, finally, 
the R*-tree against other R-tree variations and the GRID file [11]. 

The summary of the experiments that were carried out by the authors is 
illustrated in Table 1. We notice that there is no common framework to compare 
all four indexes and draw conclusions regarding their performance on kNN 
queries. In the following section we describe our approach in comparing the four 
indexes. 

 
Table 1: Comparison of index structures regarding previous experimental analysis 

  Index indexes 
compared 

Size 
Dimensionality 

distribution Block 
size 

Range Query KNN-
query 

1 R* tree quadratic split 
Rtree, linear 
split Rtree, 
Greene's Rtree 

100000 2d uniform, 
clustered, 
parcel, real, 
gaussian, 
mixed uniform 
 

1024 
bytes 

rectangle 
intersection 

- 
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4.    Experimental Evaluation 

We conducted a series of experiments on the four indexing structures using for each 
one implementation code provided by the authors. We varied certain parameters like 
the dimensionality, the data set size, and the parameter k in kNN queries, as well as 
parameters that are unique in each of the participating indexing structures like the 
number of clusters in iDistance or the order of Division in P+-tree. 
Regarding the R*-tree, we used the C++ implementation by Hans-Peter Kriegel's 
group obtained from the R-tree portal site. We had to make major changes to the 
original code in order to compile it with the g++ 4.3.2 compiler running under Linux. 
Our system was a modest one, having one Intel Pentium 4 CPU running at 1.8 GHz 
with 2GB RAM. 

Our purpose was to run experiments with very large data sets with more than 
100.000.000 points each, but the creation of indexes of some of the tested indexing 
data structures, namely, the R*-tree and the Hybrid tree in 16-d data sets proved to 
be a very lengthy operation. For example, it took one day to create an R*-tree with 
16.000.000 points. So, we decided to test all index structures with smaller data sets 
and achieve a unified view of their performance. The page size was set to all of the 
competing indexing structures to 4096 bytes and the k value in the kNN search 
algorithm was set to 1 and 10 for both of the 8 and 16 dimension cases that we 
tested. The number of clusters in the iDistance method was set to 64 in all the 
experiments, and the order of division parameter in the P+-tree implementation was 
set to 4 in all the experiments. We implemented a simple data generator for the 
experiments. Finally, because the P+-tree implements only window queries, we had 
to experiment for the appropriate side length of the window query so that correct 
average answers of 1 and 10 NN points could be computed accounting for 8 and 16 
dimensions. 

Table 2 shows the time required to build the indexes for varying dimensionality 
and dataset size. iDistance does not provide us with such information. We observe 
that the Hybrid tree is about an order of magnitude faster than the rest of the 
methods. All methods scale linearly to both the dimensionality and the dataset size. 
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2 Hybrid 
tree 

SR tree, hB-
tree, Sequential 
Scan 

1.2 million 16d     
70K-16,32,64d 

fourier datasets   
collhist dataset 

4096 
bytes 

Selectivity 
0,07% Fourier 
0,2% 
COLHIST 
 

- 

3 P+ tree Pyramid, 
iminmax 

581012 10d 
68040 32d  
500000 16d32d 

real data set  
real data set 
clustered 

4096 
bytes 

- 2-10-NN 

4 IDistanc
e 

M tree,Omni 
Seq.Scan, 
Arya's bbd tree 

100000 to 
500000 of 
8,16,30 dim  

uniform & 
clustered  

4096 
bytes 

- 10-50NN 
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performance. The page size was set to all of the competing indexing structures 
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for both of the 8 and 16 dimension cases that we tested. The number of clusters 
in the iDistance method was set to 64 in all the experiments, and the order of 
division parameter in the P+-tree implementation was set to 4 in all the 
experiments. We implemented a simple data generator for the experiments. 
Finally, because the P+-tree implements only window queries, we had to 
experiment for the appropriate side length of the window query so that correct 

 35 

average answers of 1 and 10 NN points could be computed accounting for 8 
and 16 dimensions. 

Table 2 shows the time required to build the indexes for varying 
dimensionality and dataset size. iDistance does not provide us with such 
information. We observe that the Hybrid tree is about an order of magnitude 
faster than the rest of the methods. All methods scale linearly to both the 
dimensionality and the dataset size. 

 
Table 2: Index build time (real time in secs) 

 DIM=8 DIM=16 
 100K 200K 300K 100K 200K 300K 

R* tree 77 159 237 148 299 448 
Hybrid tree 4 10 13 13 28 45 

P+ tree 47 107 167 78 153 268 
 

Regarding the size of the created indexes, iDistance and P+ tree are 
essentially B+-trees and the code we obtained does not compute the relevant 
statistics. The R*-tree and the Hybrid tree report similar results, with the Hybrid 
tree showing increased storage requirements as the dataset size increases, as 
shown in Table 3. 

 
Table 3: Index size in pages 

 Dim=8 Dim=16 

 100K 200K 300K 100K 200K 300K 
R* tree 1516 3035 4552 2942 5883 8824 

Hybrid tree 1111 2213 4155 2242 4457 8099 
 

Table 4 reveals that the Hybrid tree, although it is a true multidimensional 
index, has the smallest average page I/O when dealing with 1NN queries, and it 
is insensitive to dimensionality. The P+tree has also very good performance due 
to the fast searching time of the B+-tree that it employs. 

 
Table 4: Average page I/O for 1NN 

K=1 Dim=8 Dim=16 

 100K 200K 300K 100K 200K 300K 
R* tree 16 22 40 987 1226 1452 

Hybrid tree 3 9 10 3 9 10 
iDistance 176 202 231 908 1125 1262 

P+ tree 3 10 22 3 36 63 
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On the other hand, iDistance appears to be more insensitive to the increase in 
dataset size and dimensionality that the R*-tree. The R*-tree has the worst 
performance in high dimensions, but performs well in low dimensionality. In the 
experiments we used comparable buffer sizes for all methods. 

Table 5 shows that when dealing with 10NN queries, the P+tree has the best 
overall performance. For such queries, the Hybrid tree joins the R*-tree regarding 
the deterioration in performance in high dimensions. On the other hand, iDistance 
has the worst performance in low dimensionality, but is comparable to the R*-tree 
and Hybrid tree in higher dimensions. 
 

 
 
 

Finally, in Table 6 and Table 7 we show the query times for the R*-tree and the 
Hybrid tree in the case of 1NN and 10NN queries. We do not report the times for the 
rest of the methods that use B+-trees because they are almost zero. The Hybrid tree 
has a very good behavior, comparable to the P+-tree and the iDistance, although it is 
a true multidimensional index. The R*-tree has the worst performance. 
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On the other hand, iDistance appears to be more insensitive to the 
increase in dataset size and dimensionality that the R*-tree. The R*-tree has the 
worst performance in high dimensions, but performs well in low dimensionality. 
In the experiments we used comparable buffer sizes for all methods. 

Table 5 shows that when dealing with 10NN queries, the P+tree has the best 
overall performance. For such queries, the Hybrid tree joins the R*-tree 
regarding the deterioration in performance in high dimensions. On the other 
hand, iDistance has the worst performance in low dimensionality, but is 
comparable to the R*-tree and Hybrid tree in higher dimensions. 

 
Table 5: Average page I/O for 10NN 

 K=10 Dim=8 Dim=16 

 100K 200K 300K 100K 200K 300K 
R* tree 41 56 67 1695 1818 2046 

Hybrid tree 20 32 54 1604 1815 2012 

iDistance 362 402 476 1789 1920 2146 

P+ tree 10 36 31 687 1007 1399 
 
Finally, in Table 6 and Table 7 we show the query times for the R*-tree and 

the Hybrid tree in the case of 1NN and 10NN queries. We do not report the 
times for the rest of the methods that use B+-trees because they are almost zero. 
The Hybrid tree has a very good behavior, comparable to the P+-tree and the 
iDistance, although it is a true multidimensional index. The R*-tree has the 
worst performance.   

 
Table 6: 1NN queries execution times (real time in secs) 

 K=1 Dim=8 Dim=16 

 100K 200K 300K 100K 200K 300K 
R* tree 1,5 3 4,49 1,9 3,86 5,69 

Hybrid tree 0 0 0 0,08 0,11 0,08 
 

Table 7: 10NN queries execution times (real time in secs) 

 K=10 Dim=8 Dim=16 

 100K 200K 300K 100K 200K 300K 
R* tree 1,57 3,12 4,7 1,94 3,88 6,04 

Hybrid tree 0 0 0 0,17 0,23 0,25 
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comparable to the R*-tree and Hybrid tree in higher dimensions. 

 
Table 5: Average page I/O for 10NN 

 K=10 Dim=8 Dim=16 

 100K 200K 300K 100K 200K 300K 
R* tree 41 56 67 1695 1818 2046 

Hybrid tree 20 32 54 1604 1815 2012 

iDistance 362 402 476 1789 1920 2146 

P+ tree 10 36 31 687 1007 1399 
 
Finally, in Table 6 and Table 7 we show the query times for the R*-tree and 

the Hybrid tree in the case of 1NN and 10NN queries. We do not report the 
times for the rest of the methods that use B+-trees because they are almost zero. 
The Hybrid tree has a very good behavior, comparable to the P+-tree and the 
iDistance, although it is a true multidimensional index. The R*-tree has the 
worst performance.   

 
Table 6: 1NN queries execution times (real time in secs) 

 K=1 Dim=8 Dim=16 

 100K 200K 300K 100K 200K 300K 
R* tree 1,5 3 4,49 1,9 3,86 5,69 

Hybrid tree 0 0 0 0,08 0,11 0,08 
 

Table 7: 10NN queries execution times (real time in secs) 

 K=10 Dim=8 Dim=16 

 100K 200K 300K 100K 200K 300K 
R* tree 1,57 3,12 4,7 1,94 3,88 6,04 

Hybrid tree 0 0 0 0,17 0,23 0,25 

 


