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Abstract 

The present work concerns with the effects of the permeability of the wall 

through an overlapping constriction in an artery assuming that the flowing blood is 

represented by a two-fluid model. The expressions for the blood flow characteristics, 

the impedance, the wall shear stress distribution in the stenotic region and the 

shearing stress at the stenosis throat have been derived. Results for the effects of 

permeability as well as of the peripheral layer on these blood flow characteristics are 

shown graphically and discussed briefly. 
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INTRODUCTION 

 

 There has been growing interest in studying blood rheology and blood flow. 

The frequently occurring cardiovascular disease, arteriosclerosis or stenosis, 

responsible for many of the diseases e.g., myocardial infarction, cerebral strokes, 

angina pectoris, etc., is the unnatural and abnormal growth that develops at various 

locations of the cardiovascular system under diseased conditions. Although, the 

etiology of the initiation of the disease (stenosis) is not well understood, its 

subsequent and severe growth on the artery wall results in serious circulatory 

disorders, but it is well established that once the constriction has developed, it brings 

about the significant changes in the flow field i.e., pressure distribution, wall shear 

stress, impedance, etc.. With the knowledge that the haemodynamic factors play an 

important in the genesis and the proliferation of arteriosclerosis, since the first 

investigation of Mann et al. (1938), a large number of researcher have addressed the 

stenotic development problems under various flow situations including Young (1968), 

Young and Tsai (1973), Caro et al. (1978), Shukla et al. (1980), Liu et al. (2004), 

Srivastava and coworkers (2010, 2012), Mishra et al. (2006), Ponalagusamy (2007), 

Layek et al. (2009), Tzirtzilakis (2008), Mandal et al. (2007), Politis et al. (2008), 

Medhavi (2011, 2012a,b), and many others. 

The flowing blood has been represented by a Newtonian, non-Newtonian, 

single or double-layered fluid by the investigators in the literature while discussing 

the flow through stenoses. It is well known that blood may be represented by a single-

layered model in large vessel, however, the flow through the small arteries is known 

to be a two-layered. Bugliarello and Sevilla (1970) and Cokelet (1972) have shown 

experimentally that for blood flowing through small vessels, there is cell-free plasma 

(Newtonian viscous fluid) layer and a core region of suspension of all the 

erythrocytes. Srivastava (2007) concluded that the significance of the peripheral layer 

increases with decreasing blood vessel diameter.  
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The plasma membrane is a thin, elastic membrane around the cell which 

usually allows the movement of small irons and molecules of various substances 

through it. This nature of plasma membrane is termed as permeability. In addition, the 

endothelial walls are known to be highly permeable with ultra microscopic pores 

through which filtration occur. Cholesterol is believed to increase the permeability of 

the arterial wall. Such increase in permeability results from dilated, damaged or 

inflamed arterial walls.  

 

In view of the discussion given above, the research reported here is therefore 

devoted to discuss the two-layered blood flow through an overlapping stenosis in an 

artery with permeable wall. The mathematical model considers the flowing blood as a 

two-layered Newtonian fluid, consisting of a core region (central layer) of suspension 

of all the erythrocytes assumed to be a Newtonian fluid, the viscosity of which may 

vary depending on the flow conditions and a peripheral region (outer layer) of another 

Newtonian fluid (plasma) of constant viscosity, in an artery with permeable wall.    

 

 

FORMULATION OF THE PROBLEM 

 

            Consider the axisymmetric flow of blood in a uniform rigid circular artery of 

radius R with an axisymmetric overlapping stenosis. Blood is assumed to be 

represented by a two-layered model consisting of a central layer of suspension of all 

the erythrocytes, assumed to be a Newtonian fluid of radius R1 and a peripheral layer 

of plasma (a Newtonian viscous fluid of constant viscosity) of thickness (R-R1). The 

stenosis geometry and the shape of the central layer, assumed to be manifested in the 

arterial segment, are described (Srivastava and Saxena, 1994; Layek, et al., 2009)   in 

Figs. 1and 2, respectively, as 
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where R  R(z) and R0 are the radius of the tube with and without constriction, 

respectively; (z)R1  is the radius of the central layer;
 
L is the tube length, L0 is the 

stenosis length and d indicates the location of the stenosis, β  is the ratio of the central 

core radius to the tube radius in the unobstructed region and )δ,(δ 1  are the maximum 

height of the stenosis and bulging of the interface at two locations in the stenotic 

region at z = d+L0/6 and z = d+5L0/6. The stenosis height located at z = d+L0/2, called 

critical height, is .4/δ 3  
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Fig.1a Flow geometry of an arterial overlapping stenosis with permeable wall. 

 

 

 

 

 

 
 
 
 
 
 
 

 
Fig.1b Flow geometry of an arterial overlapping stenosis with peripheral layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 The shape of the central layer 
 

The equations describing the laminar, steady, one-dimensional flow in the case of a 

mild stenosis  0Rδ   are expressed (Young, 1968; Sharan and Popel, 2001) as 

L 

             plasma 

δ 

r 

δ1 

z 

                µp, up 

                 µc, uc 

                 
     erythrocytes+plasma 

R1(z) R(z) 
R0 

o 

L0 d 

r 

stenosis 

R0 

 

 

R(z) 

 

 

δ 

L0 d 

O 

L 

z 



e-Περιοδικό Επιστήμης & Τεχνολογίας                                                                                      
e-Journal of Science & Technology (e-JST) 

 

                               (4), 8, 2013                                                                                                                  76 

                     , u)
r

(r
rr

μ

dz

dp
p

p








          R(z),r(z)R1                                  (2)                                           

            ,u
r

r
r

 
r

μ

dz

dp
c

c
















                 (z),Rr0 1                                       (3) 

where )μ,u( pp  and )μ,u( cc  
are (velocity, viscosity) of fluid in the peripheral layer 

 R(z)r(z)R1   and central layer  (z)Rr0 1 , respectively;  p is the pressure 

and (r, z) are (radial, axial ) coordinates in the two-dimensional cylindrical polar 

coordinate system. 

                      The conditions that are satisfied at the artery wall and the interface for 

the present study may now be stated (Beavers and Joseph, 1967; Srivastava et al., 

2012) as  
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where
dz
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μ

k
u

p

porous  , 
porousu  is the velocity in the permeable boundary, Bu  is the slip 

velocity, pμ is the plasma viscosity (fluid viscosity in the peripheral layer), k  is Darcy 

number and α (called the slip parameter) is a dimensionless quantity depending on the 

material parameters which characterize the structure of  the permeable material within 

the boundary region.  

 

ANALYSIS 

The straight forward integration of Eqns. (2) and (3), subject to the boundary 

conditions (4), (5) and (6), yields the expressions for velocity, 
pu
 
and cu  as  
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         with
cp μμμ  .                                                                                                                                                                

The volumetric flow rate, Q is now calculated as  
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Following the argument that the total flux is equal to the sum of the fluxes across the 

two regions (central and peripheral), one derives the relations (Srivastava and Saxena, 

1994): αδδ  and R βR 11   )1β0(  . An application of these relations into the Eqn. 

(9), yields  
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The pressure drop, L)zatp- ,0zatp(Δp   across the stenosis in the tube of 

length, L is obtained as: 
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The analytical evaluation of the first and the third integrals on the right hand side of 

Eqn. (11) are the straight forward, whereas the evaluation of the second integral seems 

to be a difficult task thus shall be evaluated numerically. One now derives the 

expressions for the impedance (flow resistance), λ,  the wall shear stress distribution 

in stenotic region, wτ , the shear stress at the stenosis throats, sτ and the shear stress at 

the stenosis critical height,
 cτ  using the definitions from the published literature 

(Young, 1968, Srivastava and Saxena, 1994),  in their non-dimensional  form as 
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         In the absence of the permeability in the artery wall (i.e., k = 0), the results 

obtained in the Eqns. (12) - (15) take the form 
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where F1(z) = })RR( )μ)β(1{11 4

0

4  , which correspond to the results derived in 

the case of  two-layered model analysis of a Newtonian fluid. When the viscosity of 

the fluid in the peripheral region is the same as the viscosity of the fluid in the core 

region (i.e., 1μ  ), one derives the results for a single-layered analysis of a 

Newtonian fluid in the presence of the permeability in the artery wall as 
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 It is further to note that the results corresponding to that of Young (1968) for 

an overlapping stenosis in the case of a Newtonian fluid with impermeable wall may 

be derived from Eqns. (12) - (15) by setting k = 0 and µ = 1. 
 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NUMERICAL RESULTS AND DISCUSSION 

 

Blood flow characteristics in arteries can be altered significantly by arterial disease, 

stenosis. To discuss the results of the study quantitatively, computer codes are 

developed to evaluate the analytical result for flow resistance, λ , the wall shear stress, 

wτ , and shear stress at the stenosis throat, sτ obtained above in Equations (12) - (14) 

for various parameter values and some of the critical results are displaced graphically 

in Figures (3-17). The various parameters are selected (Young, 1968;  Beavers and 

Joseph,  1967;  Srivastava et al., 2012)  as:  0L (cm) = 1;  L (cm) = 1, 2, 5, 10; α = 

0.1, 0.2, 0.3, 0.5; k = 0, 0.1, 0.2, 0.3, 0.4, 0.5; β = 1, 0.95, 0.90; μ=1, 0.5, 0.3, 0.1; 

and  0Rδ = 0, 0.5, 0.10, 0.45, 0.20; etc.. It is worth mentioning here that present 

study corresponds to impermeable artery case, to single-layered model study, and to 

no stenosis case for parameter values k  (here and after called Darcy number) = 0; 

β =1 or 1μ  , and 0Rδ 0  ; respectively. 
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The flow resistanceλ , increases with the stenosis height, 0Rδ , for any given set of 

parameters. At any given stenosis height, 0Rδ ,λ decreases with the peripheral layer 

viscosity,μ from its maximal magnitude obtained in a single-layered study (i.e., μ=1 

or β =1, Fig.1a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One observes that at any given stenosis height, 0Rδ , the  impedance, λ    increases 

with the slip parameter,α  (Fig.4).  

The blood flow characteristic,λ  increases with the Darcy number, k  at any given 

stenosis height, 0Rδ (Fig.5). 
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The impedance, λ  decreases with increasing tube length L which interns implies that 

λ   increases with increasing value of LL 0 (stenosis length, Fig.6).  

 

 

                  

 

 

 

 

 

 

 

 

 

One observes that the flow resistance, λ  decreases rapidly with increasing value of the 

Darcy number, k  from its maximal magnitude at 0k   (impermeable wall) in the 

range  0.15k0   and afterwards assumes an asymptotic value with increasing 

values of the Darcy number, k  (Fig.7).  
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We notice that the blood flow characteristic, λ  increases with the slip parameter,α  

from its minimal magnitude at 0.1α   and approaches to an asymptotic magnitude 

when α   increases from 0.2 (Fig.8). 

 

 The wall shear in the stenotic region, wτ  increases from its approached value at   

0Lz 0   to its peak value at 0.5Lz 0   and then decreases from its peak value to its 

approached value at the end point of the constriction profile at 1Lz 0    for any given 

set of parameters (Figs. 9-12). 
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characteristic, sτ  
 possesses characteristics similar to that of the flow resistance,  with 

respect to any parameter (figs. 13-17). Numerical results reveal that the variations of 

the shear stress, sτ are similar to that of the impedance (flow resistances), λ  with 

respect to any parameter. 
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CONCLUSIONS 

 

To observe the effects of the permeability of the artery wall and the peripheral layer 

on blood flow characteristics due to the presence of a stenosis, a two-fluid blood flow 

of Newtonian fluid through an axisymmetric stenosis in an artery with permeable wall 

has been studied. The study enables one to observe the simultaneous effects of the 

wall permeability and the peripheral layer on blood flow characteristics due to the 

presence of a stenosis. For any given set of parameters, the blood flow characteristics 

(impedance, wall shear stress, etc.) assume lower magnitude in two-fluid model than 

its corresponding value in one-fluid analysis. The impedance decreases with 

increasing Darcy number from its maximal magnitude in the case of impermeable 

wall (i.e., at zero Darcy number). It is therefore concluded that the existence of 

permeability in the artery wall and the presence of the peripheral layer in the artery 

help the functioning of the diseased artery. 
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