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Abstract 

Web sites are likely to be regularly scanned and attacked by both automated and manual means. 

Intrusion Detection Systems (IDS) assist security analysts by automatically identifying potential attacks 

from network activity and produce alerts describing the details of these intrusions. However, IDS have 

problems, such as false positives, operational issues in high-speed environments and the difficulty of 

detecting unknown threats. Much of ID research has focused on improving the accuracy and operation 

of IDSs but surprisingly there has been very little research into supporting the security analysts’ 

intrusion detection tasks. Lately, security analysts face an increasing workload as their networks 

expand and attacks become more frequent. In this paper we describe an ongoing surveillance prototype 

system which offers a visual aid to the web and security analyst by monitoring and exploring 3D 

graphs. The system offers a visual surveillance of the network activity on a web server for both normal 

and anomalous or malicious activity. Colours are used on the 3D graphics to indicate different 

categories of web attacks and the analyst has the ability to navigate into the web requests, of either 

normal or malicious traffic. Artificial Intelligence is combined with Visualization to detect and display 

unauthorized web traffic. 

 

Keywords: Web Visual Analytics, Web Attacks Visualization, Web Intrusion Detection, Evolutionary 

Artificial Neural Networks, Network Security, Surveillance Aid.   

 

1. Introduction 

The work of an ID analyst is a complex task that requires experience and knowledge. Analysts must 

continually monitor IDSs for malicious activity. The number of alerts generated by most IDS can 

quickly become overwhelming and thus the analyst is overloaded with information which is difficult to 

monitor and analyze. Attacks are likely to generate multiple related alerts. Current IDS do not make it 

easy for operators to logically group related alerts. This forces the analyst to look only at aggregated 

summaries of alerts or to reduce the IDS signature set in order to reduce the number of alerts. In the 

current version of Snort [1], an open source IDS available to the general public, there are more than 

12000 signatures for network intrusion detection, over 2100 of which are web-related signatures. By 

reducing the signature set the analyst knows that although it reduces the false alarms it is also likely to 

increase the number of false negatives, meaning that he will not be able to detect actual attacks. 

 

Organizations, companies and individuals are making every effort to build and maintain secure Web 

sites. The threat profile facing enterprises and organizations has undeniably shifted from network-layer 

exploits to more advanced attacks against applications, primarily Web and Web services applications. 

 

According to a recent report published by the Common Vulnerabilities and Exposures (CVE) project 

[2], flaws in Web software are among the most reported security issues so far this year. Hackers are 

known to search for an easy target. Poorly configured or poorly written web applications are not only 

an easy target, taking the attackers straight to their goal, giving them access to data and other 

information, but can also be used to spread malicious software such as viruses, worms, Trojan horses 

and spyware to anyone who visits the compromised site. “Easy to learn” scripting languages enable 

anyone with an eye for graphic design to develop and code powerful web-based applications. 

Unfortunately, many developers only bother to learn the eye-catching features of a language and not 

the security issues that need to be addressed. As a result, many of the same vulnerabilities that were 

problematic for developers several years ago remain a problem today. This is perhaps why Cross-Site 

Scripting (XSS) is now the most common type of application layer attack, while buffer overflow 

vulnerability, the perpetual No. 1 attack, has dropped to fourth place. Two other web application 

vulnerabilities, SQL injections and PHP remote file inclusions, are currently ranked second and third 

[3]. 
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To detect web-based attacks, intrusion detection systems (IDS) are configured with a number of 

signatures that support the detection of known attacks. Unfortunately, it is hard to keep intrusion 

detection signature sets updated with respect to the large numbers of continuously discovered 

vulnerabilities. Developing ad hoc signatures to detect new web attacks is a time-intensive and error-

prone activity that requires substantial security expertise. To overcome these issues, misuse detection 

systems should be complemented by anomaly detection systems, which support the detection of new 

attacks. Unfortunately, there are no available anomaly detection systems tailored to detect attacks 

against web servers and web-based applications. 

 

According to a survey [4], in the intrusion detection area visualization tools are needed to offload the 

monitoring tasks, so that anomalies can be easily flagged for analysis and immediate response by the 

security analyst. Information presented in a visual format is learned and remembered better than 

information presented textually or verbally. The human brain is structured so that visual processing 

occurs rapidly and simultaneously.  Given a complicated visual scene humans can immediately pick 

out important features in a matter of milliseconds. Humans are limited in terms of attention and 

memory but they excel at the processing of visual information.  

 

The lack of intelligent visualization tools for web Intrusion Detection has led us to design and create a 

prototype system. It is a surveillance aid for the web and security analyst providing him with an 

intelligent visual tool to detect anomalies in web requests by exploring 3D graphs and understand 

quickly the kind of undergoing attack by means of colours. The system looks into web requests to 

detect “fingerprints” which are special characters or chains of characters. These fingerprints are then 

passed to an expert system to decide if they constitute a malicious request or attack. The output of the 

expert system is then transformed into a 3D graph for visual interpretation. Web attacks can be either 

rejected by the web server or can be successful due to security weaknesses. 

The expert system used for the web attack classification is a hybrid expert system, an Evolutionary 

Artificial Neural Network (EANN). It is a supervised multilayer Artificial Neural Network (ANN) 

combined with genetic algorithms. 

The rest of this paper is organized as follows: section 2 presents related work, section 3 presents the 

modules of the visualization prototype ID system in details and section 4 describes the system’s 

performance evaluation. Finally, concluding remarks appear in section 5. 

2. Related Work 
There is ongoing research on IDS systems especially on anomaly detection and profile or specification-

based detection. This includes various statistical methods, artificial neural networks and data mining 

methods ([5],[6],[7]).  

Interesting works on the detection of web-based attacks have been published in the last few years. 

Statistical methods have been used in [8] such as the multi-model approach for the detection of web-

based attacks. A Bayesian parameter estimation technique for web session anomaly detection is 

described in [9] and DFA (Deterministic Finite Automata) induction has been applied in [10] to detect 

malicious web requests in combination with rules for reducing variability among requests and 

heuristics for filtering and grouping anomalies. 

Recent works on application-level web security cover SQL and PHP code injections and XSS attacks. 

The authors in [11] combine a static analysis and runtime monitoring to detect and stop illegal SQL 

queries. In [12] a sound, automated static analysis algorithm is developed for the detection of injection 

vulnerabilities, modelling string values as context free grammars and string operations as language 

transducers. In [13] Noxes, a client-side solution is presented, which acts as a web proxy and uses both 

manual and automatically generated rules to mitigate possible cross-site scripting attempts. 

Additionally, in [14] Secubat, a web vulnerability scanner is described, which is a generic and modular 

web vulnerability scanner that, similar to a port scanner, automatically analyzes web sites with the aim 

of finding exploitable SQL injection and XSS vulnerabilities. Visual analytics have recently been 

applied in network monitoring [15], detection and analysis of protocol BGP anomalies [16] and 

Intrusion Detection [17].  

Artificial Intelligence used for web intrusion detection is limited to Bayesian classifiers. In [18] an IDS 

system is presented based on a Bayesian classifier in the same vein as the now popular spam filtering 

software. This simple classifier operates as follows: First the input is divided into some form of unit 

which lends itself to being classified as either benign or malicious, this unit of division is denoted as a 

message. It is the responsibility of the user to mark a sufficient number of messages as 

malicious/benign beforehand to effect the learning of the system. The system is thus one of direct self 

learning. The message is then further subdivided into tokens. The tokens are scored, so that the score 

indicates the probability of the token being present in a malicious message, i.e. the higher the relative 
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frequency of the tokens occurrence in malicious messages, relative to its occurrence in benign 

messages, the more indicative the token is of the message being malicious. The entire message is then 

scored according to the weighted probability that it is malicious/benign, given the scores of the tokens 

that it consists of. A 2D tool named Bayesvis was implemented to apply the principle of interactivity 

and visualization to Bayesian intrusion detection. The tool reads messages as text strings and splits 

them up into the substrings that make the tokens. The major limitations of this system are the 

following: a) the training phase of the classifier is time-consuming as sufficient statistics for every type 

of web attack are needed for the efficient work of a Bayesian classifier. The training is also a laborious 

task as the operator has to perform manually the correction of false alarms. He/she starts by marking a 

few of the benign accesses and then he re-scores, re-sorts and repeats the process according to a 

predefined strategy, until the false positive rate arrives at an acceptable level, b) attacks against the web 

applications are not detected, such as backdoor intrusions and code injection attempts by high level 

applications such as SQL, Perl, Php, HTML and Java c) new attacks cannot be detected due to the 

absence of previous statistics d) only web logs, not real time web traffic, are processed. 

 

Our work focused on creating an ongoing surveillance tool offering the security analyst a novel visual 

tool for monitoring and diagnostic needs. We would like to offer an online tool which is capable of 

dealing with real network traffic in addition to processing stored web logs. We used an unsupervised 

artificial neural network for grouping similar attacks into classes and an Evolutionary Artificial Neural 

Network for the web attack classification. In addition, we have expanded the signature method for ID 

to detect backdoor intrusions and code execution attempts by high level applications such as SQL, Perl, 

Php, HTML and Java. Attacks are classified automatically by the expert system, false alarms are very 

limited, new attacks not seen before are detected as well and simultaneous multiple attacks from 

different networks can be easily spotted on the screen from the IP source address labels and the 

colouring of the different attack classes. Additionally, the security analyst can examine in real time the 

malicious code of Perl, SQL or other high level language injections, Cross Site Scripting information 

and the code on new backdoor attempts such as worms and viruses. 

 

In the first version of the prototype the classifier used was an Artificial Neural Network (ANN). In the 

final version of the prototype we used a hybrid expert system for the web attacks classification. We 

used an Evolutionary Artificial Neural Network (EANN), which is a multilayer Artificial Neural 

Network combined with Genetic Algorithms (GA) for weight optimization. 

Finally, we must emphasize that the whole system is developed in Linux and all system modules are 

written in standard C language, offering speed and portability to any operating system and platform, 

even on small portable computers. 

 

3. Materials and Methods 

The visualization prototype system consists of the following modules: The data capture module, the 

pre-processor module, the knowledge base module, the graph generator module and the statistical 

analysis module. The data capture module selects data either online from the Internet traffic or offline 

from the web server logs. The pre-processor module examines the web requests to detect malicious 

traffic and its output is then forwarded to the knowledge base module to predict the type of 

unauthorized traffic. Then, both normal and malicious traffic are processed by the graph generator 

module for visualization. Additionally, all traffic is kept for statistical analysis. Fig. 1 shows the 

architecture of the visualization prototype system. Each module is described in detail below:  

3.1 Data capture module 

The two most popular web servers are Microsoft Internet Information Services (IIS) and the open 

source Apache web server. The IIS web server of the Library of the Technological Educational 

Institution of Athens was used in order to study the various types of attacks and to create the 

knowledge data base of the system. We captured real data with the tcpdump utility from June to the end 

of November 2005. Using only real data we could not have a complete set of various attacks, so we 

have completed the tests with web logs data of the last three years. Web logs covered all versions of the 

Microsoft IIS server, e.g V4 (Win NT 4.0), V5 (Win 2000), V6 and API (Win 2003). The size of real 

data was 95,298 web requests and the size of tested logs was 527,373, 620,033 and 23,577 events for 

the last three years respectively. 
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Figure 1. Visualization prototype ID system 

3.2 Pre-processor module 

The pre-processor analyses the web request and creates a feature vector of dimension 30. Fingerprints 

are detected checking their decimal or hexadecimal representation. The presence of a specific 

fingerprint in the web request is indicated in the feature vector as 1 (true) and its absence as 0 (false or 

unknown). An attack may have more that one “1” fired in its vector representation; furthermore an 

attack belonging to a specific attack class has at least one binary representation. The output of the pre-

processor module is two files, one with the feature vector and one with the web request data. The 

feature vector will be the input to the expert system and the web request data will be forwarded to the 

graph generator module.  

The extracted data is the most significant for online analysis such as the source IP address, the request 

option (GET, HEAD etc.) and the request payload. For example the pre-processor for the following 

malicious web request: 

00:25:37 213.23.17.133 - HEAD /Rpc/..%5c..%5c..%5cwinnt/system32/cmd.exe /c+dir+c:\ 404 143 99 

0 HTTP/1.0 - - -    produces the following outputs: 

1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   (feature vector)  and 

213.23.17.133 HEAD /Rpc/..%5c..%5c..%5cwinnt/system32/cmd.exe /c+dir+c:\   (web request data). 

3.3 Knowledge base module 

3.3.1 Classes of Web attacks 

 

Modern web servers offer optional features which improve convenience and functionality at the cost of 

increased security tasks. These optional features are taken in consideration in our design in addition to 

traditional types of web attacks (Unicode, directory traversal, buffer overflow, Server-Side Includes-

SSI, Cross Site Scripting-XSS, mail and CGI attacks). Attacks against web applications such as code 

injections or insertion attempts are detected in the following programming languages HTML, 

Javascript, SQL, Perl, Access and Php. In addition IIS indexing vulnerabilities, IIS highlight, illegal 

postfixes, IIS file insertion (.stm), IIS proxy attempts and IIS data access vulnerabilities (msadc) are 

detected as well. All .asa, .asp and Java requests are tested for URI (Uniform Resource Identifier) legal 

syntax according to standards, meaning that a corresponding query not in the form <?key=value> is 

illegal.  Trojan/backdoor upload requests are detected as well. These backdoors are left by worms such 

as Code Red, Sadmin/IIS and Nimda. Backdoor attempts for apache and IIS servers are detected when 

web requests ask for the corresponding password files (.sam and .htpasswd). Finally, command 

execution attempts are detected for both Windows (.exe, .bat, .sys, .com., .ini, .sh, .dll and other) and 

Unix (cat, tftp, wget, ls and other) environments.  

 

A total of 30 fingerprints was used in the model to group all the different types of known web attacks 
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[19]. A detailed description of web attacks fingerprints is given in [20].  

To classify the above web attack types a self-organizing neural network system has been used. The 

system was based on the famous Grossberg and Carperter’s Adaptive Resonance Theory (ART1) [21]. 

ART1 algorithm is an unsupervised learning algorithm with biological motivations. Clustering 

algorithms are motivated by biology in that they offer the ability to learn through classification. Based 

on the Grossberg’s stability-plasticity dilemma we cluster new concepts with older analogous ones and 

when we encounter new knowledge we create new clusters without destroying what has already been 

learned. 

The ART1 neural network created 15 clusters or classes. These 15 classes were finally grouped 

manually into 9 as there was more that one class for command execution (Windows, Unix) and IIS type 

of attacks. It is interesting to notice that ART1 did not create a separate class for directory traversal and 

Unicode attacks because almost all of the web requests containing Unicode or traversal fingerprints (..\ 

or ../) always included another type of attack (e.g buffer overflow, command execution attempt, code 

insertions or other). So, directory traversal and Unicode attempts are not classified as separate attack 

classes. For historical reasons we included Unicode attempts into the Miscellaneous class. 

The 9 final web attack classes are the following: 

 

1) Commands (CMD): Unix or Windows commands for code execution attempts. 

2) Insertions (INS): Application code injections (SQL, Perl, HTML, Javascript, Data Access). 

3) Trojan Backdoor Attempts (TBA): Attacks triggered by viruses and worms (Cod Red II, Sadmin, 

etc.).  

4) Mail (MAI): Mail attacks through port 80 (formail, sendmail etc.). 

5) Buffer overflows (BOV): Attacks corrupting the execution stack of a web application. 

6) Common Gateway Interface (CGI): Exploitation of vulnerable CGI programs. 

7) Internet Information Server (IIS): Attacks due to vulnerabilities of IIS. 

8) Cross Site Scripting (XSS) attacks. 

9) Miscellaneous (MISC): Unicode, coldfusion and malicious web request options such as 

PROPFIND, CONNECT, OPTIONS, SEARCH, DEBUG, PUT and TRACE. 

3.3.2 Training Data Quality 

To measure the information which exists between the input data and the output data we had to calculate 

the mutual information between the two data sets. We want the network to take the input and remove 

all uncertainty about what the corresponding output should be. The amount of the original uncertainty 

we can remove depends on the mutual information present in the data. With an ideal training set, once 

we know the input value, there should be no doubt as to the correct output value: it should be the one 

value with a conditional probability, given the current input, of one; all other output values should have 

a probability of zero. As we cannot have an ideal training set, we need a measure of the average spread 

of conditional probabilities over the whole training set. 

Let H denote the entropy of a set of events, X and Y the data sets of input and output respectively, 

H(X|Y) the conditional entropy of inputs given the outputs and I(X;Y) the mutual information between 

the input and the output data of the training set. We measured the H(X), H(Y) and I(X;Y) using a 

program to calculate the equations (1), (2) and (3) or (4): 
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where n is the number of possible distinct input events, m the number of possible distinct output events 

and Pi is the probability of event i occurring out of the possible n events. Table 1 shows the results with 

the used training set. 

As we can see: H(inputs) ≈ log(n) and H(outputs) ≈ log(m), so the used training set is a well balanced 

training set. The ratio I(input; output):H(output) ranges from 0 to 1 and would be high if a data set is 
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learnable. This ratio for our data set is equal to 0.805, which means that the data set used is learnable. 

However, it could be improved in the future. 

Table 1.  Data sets entropy and mutual information results 

n log(n) m log(m) H(X) H(Y) H(X|Y) H(Y|H) I(X;Y) 

49 3.891 9 2.197 3.512 2.160 1.777 0.420 1.740 

3.3.3. Evolutionary neural expert system 

If the pre-processor detects even one fingerprint its output is forwarded to an expert system for 

classification. In the first version of the prototype [22] we used an Artificial Neural Network (ANN) for 

classification. ANN’s represent a class of very powerful, general-purpose tools that have been 

successfully applied to prediction, classification and clustering problems. The ANN used was a 

multilayer network with one hidden layer, using the generalized delta rule with the backpropagation 

(BP) algorithm for learning and the sigmoid function as activation function [23]. The input neurons 

were 30 (+1 the bias), the hidden neurons 10 (+1 the bias) and the output neurons 9, representing the 9 

web attack classes.  

In the final version of the prototype a hybrid expert system is used for the web attacks classification. 

We used an Evolutionary Artificial Neural Network (EANN), which is neural network combined with 

Genetic Algorithms (GA) for weight optimization. GA’s are algorithms for optimization and learning, 

based loosely on several features of biological evolution. GA’s do not face the drawbacks of the 

backpropagation (BP) algorithm, such as the scaling problem and the limitation of the fitness (error) 

function to be differentiable or even continuous. If the problem complexity increases, due to increased 

dimensionality and/or greater complexity of data, the performance of BP falls off rapidly. GA’s do not 

have the same problem with scaling as backpropagation. One reason for this is that they generally 

improve the current best candidate monotonically, by keeping the current best individual as part of their 

population while they search for better candidates. Secondly, they are not bothered by local minima.  

Let us consider the three-layer neural network of the prototype system. The parameters n, m and l, 

denoting the number of neurons of the three layers, are respectively 30, 10 and 9 for the prototype 

system. To find an optimal set of weights for the multilayer feedforward neural network we represented 

the problem domain as a chromosome. Initial weights are chosen randomly within some small interval 

[-0.5, 0.5]. The set of weights can be presented by a square matrix (Fig. 2) in which a real number 

corresponds to the weighted link from one neuron to another.  

Each row of the matrix represents a group of all the incoming weighted links to a single neuron. This 

group can be thought of as a functional building block of the network [24] and therefore should be 

allowed to stay together passing genetic material from one generation to the next. To achieve this we 

associated each gene of the chromosome not with a single weight but with a group of weights, a row of 

the above matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. ANN’s weight connection matrix 



e-Περιοδικό Επιστήμης & Τεχνολογίας                                                                                      
e-Journal of Science & Technology (e-JST) 

 

http://e-jst.teiath.gr                                                                                    7 

The numbers of neurons are the same as in the original neural network. So, as in total there are 409 

weighted links (31*10+11*9) between neurons, the chromosome has a dimension of 409 and a 

population member has been represented as follows: 

M = <w0,0,w1,0…w30,0, w0,1,w1,1…w30,1 … w0,9,w1,9…w30,9 | w0,0,w1,0…w10,0, w0,1,w1,1…w10,1  … 

w0,8,w1,8…w10,8 > , 

where the first part is the transposed matrix Wih[31,10] of weights between the input and the hidden 

layer (we string the rows together) and the second concatenated part is the transposed matrix Who[11,9] 

of weights between the hidden layer and the output. Each member of the population was coded with the 

structure of the chromosome and a double real number for the fitness number.  

The fitness function for evaluating the chromosome’s performance was the sum of squared errors 

(SSE), used in the training phase of the BP algorithm. The smaller the sum, the fitter the chromosome. 

We used crossover and mutation as genetic operators. The crossover and mutation probabilities were 

0.8 and 0.05 respectively. We started with a mutation probability of 0.02, but we finally used 0.05 as it 

accelerated the evolution of the GA. 

The used algorithm of the EANN system can be described in a pseudo-code as following: 

 

1) Randomly generate an initial population of chromosomes (population size 30) with weights in the 

range of [-0.5, 0.5]. 

2) Train the network for 1000 epochs using the BP algorithm. Calculate the fitness function for all 

individuals. 

3) Select a pair of chromosomes for mating with a probability proportional to their fitness (roulette-

wheel selection). 

4) Create a pair of offspring chromosomes by applying the genetic operators crossover (multi-point 

crossover) and mutation. 

5) Place the created offspring chromosomes in the new population. 

6) Repeat step 4 until the size of the new population becomes equal to the size of the initial population 

and then replace the parent chromosome population with the new (offspring) population. 

7) Go to step 2 and repeat the process until the algorithm converges or a specified number of 

generations has been reached (we used a maximum of 1000 generations). 

8) Use the weights of the best member (ideal) of the last generation for the feedforward only operation 

of the ANN (classification). 

 

For each generation we calculated the minimum (minFit) , the average (avgFit) and the maximum 

fitness (maxFit) of the population. In the belief that the algorithm should converge if the minimum 

fitness were less than an epsilon, equal to  10-12 and the ratio minFit/avgFit were greater that 0.95. In 

this way, by setting such a severe criterion all members of the final generation would become “ideal” 

and fit to be used for classification in the feedforward neural network, not just the best member of the 

population. The algorithm did indeed converge after 305 generations giving a minimum fitness of 

6.61e-12 and 30 ideal members, a set of 30 best optimized weights for the operation of the ANN. 

3.4 Graph generator module 

The predicted attack by the EANN is then used to create a coloured directed graph in dot form of the 

well known GraphViz [25] package, using the corresponding DOT language. This language describes 

four kinds of objects: graphs, nodes, edges and labels and has a large number of attributes that affect 

the graph drawing. The payload of a web request is cut in nodes and the directed edges are the links 

between these nodes from left to right. Therefore, a web request from an IP source 212.205.253.160 

with paylod GET /Hact/Graphics/Springer.gif, has as nodes the words “212.205.253.160”, “GET”, 

“Hact”, “Graphics”,  “Springer.gif” and as “directed edges” the links between these nodes from left to 

right: 

 212.205.253.160  GET  Hact  Graphics  Springer.gif 

 

When each web request with its IP source address and the requested data is visualized in a 3D graph 

the security analyst can navigate into the graph for quick interpretation and evaluation in case of a 

malicious attempt. Timestamps were not added to the graph as graphs are displayed in real time and the 

objective here was to keep the display as simple as possible. 

There are two graphs generated with the GraphViz package. One graph contains real time traffic, e.g. 

both normal and possible malicious traffic and the other does not contain normal but only the possible 

malicious traffic. Normal traffic is visualized in black and malicious traffic in 9 different colours, one 

for each attack class, such as red (Commands), brown (Insertions), magenta (Backdoor attempts), green 

(Mail), cyan (Buffer overflows), gold (CGI), blue (IIS), yellow (XSS) and coral (Miscellaneous). This 
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visual separation was necessary because normal traffic overloads the display and the security analyst 

cannot interpret quickly the malicious attempts. When visualizing both normal and malicious traffic the 

security analyst spends more time navigating through the graph trying to eliminate normal traffic by 

zooming into the coloured part of the display, than he would if he had only a coloured graph to contend 

with.  

The malicious traffic colour display in both graphs is the result of the visual analytics process whereby 

web traffic is first analysed (i.e., the most important data is chosen, Intrusion Detection analysis is done 

using Artificial Intelligence) and then displayed. By employing intelligent means in the analysis 

process the visual representation of the traffic allows the security analyst to gain insight into the 

intrusion problem quickly and will be of invaluable help in the decision making process as he will be 

able to rapidly extract knowledge from the graph. 

These two dot coloured graphs are then visualized with Tulip [26], a 3D graph visualization tool, 

supporting various graph algorithms and extensive features for interactive viewing and graph 

manipulation. Fig. 5 shows normal and malicious web traffic and Fig. 6 only the malicious traffic for 

the same events. In Fig. 5 the brown graphs on the left indicate Perl injection attempts, the cyan graphs 

buffer overflows attempts, the red graphs indicate multiple command execution attempts from IPs 

69.107.112.253, 203.163.130.94 and other sources and the magenta graphs indicate multiple backdoor 

attempts (Code Red II) from IP 203.163.130.94. In Fig. 6 we can spot additional backdoor attempts 

from IPs 213.23.17.133 and 129.115.207.6 and buffer overflow attacks from IP 195.130.70.133 (cyan 

graph). The Perl injection code can be easily read on the bottom right of the graph. 

3.5 Statistical analysis module 

The system performance was tested using real data, captured with the tcpdump utility in June and 

November 2005 and web logs of 2005 and 2006. In the statistical analysis module of the system a 

confusion matrix is calculated to display the classification results of a network. The confusion matrix is 

defined by labelling the desired classification in rows and the predicted classifications in columns. For 

each exemplar, a 1 is added to the cell entry defined by (desired classification, predicted classification). 

Since we want the predicted classification to be the same as the desired classification, the ideal 

situation is to have all the exemplars end on the diagonal cells of the matrix.  Table 2 shows such a 

confusion matrix for test1 (web logs 2005). 

In addition, for each test a 2x2 table is calculated containing, on the first row the Hits (attacks present 

or True Positives) and the False Alarms (or False Positives) and on the second row the Misses (attacks 

present but not detected or False Negatives) and the Correct Rejections (normal traffic or True 

Negatives). Results are presented in Table 3 in this form. All tests have been run for various values of a 

detection threshold to show how changing the detection threshold affects detections versus false 

alarms. If the threshold is set too high then the system will miss too many detections and conversely, if 

the threshold is set too low there will be too many false alarms. For the tests we have used threshold 

values rating from 0.3 to 1.0 with a step of 0.1. The best results using the BNN were obtained with a 

threshold value of 0.8 giving maximum detections of 95% and a minimum of false alarms. Using the 

EANN we obtained almost the same results for a threshold rating between 0.3 and 0.9, due to the stable 

performance (93.50%) of the hybrid expert system. Table 3 summarizes the results with various testing 

data sets. 

Table 2.  Confusion matrix for test1 (EANN with threshold 0.7) 

 CMD INS TBA MAI BOV CGI IIS XSS MIS NRM 

CMD 17469 241 0 0 0 0 0 9 0 0 

INS 0 5 0 0 0 0 0 0 0 0 

TBA 0 0 312 0 0 0 0 0 0 0 

MAI 0 0 0 3 0 0 0 0 0 0 

BOV 0 0 0 0 421 0 0 0 0 0 

CGI 0 0 0 0 0 7 0 0 0 0 

IIS 0 0 0 0 0 0 95 0 0 0 

XSS 0 5 0 0 0 0 0 0 0 0 

MIS 0 0 0 0 0 0 0 0 173 0 

NRM 0 0 0 0 0 0 0 0 0 130780 

 

     Hits:      18485  False Alarms:           255 

     Missed:       25  Normal traffic:   130780  Total events: 149545 
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Table 3.  Performance evaluation tests (EANN) 

Test Data 

 

Positives 

Negatives 

Logs 2005 

 

149545 

events 

Logs 2005 

 

149456  

events 

Logs 2006 

 

149450  

events 

Logs 2006 

 

149503  

events 

Logs 2006 

 

149749 

events 

online data 

(Oct. 06) 

49372  

events 

online data 

(Nov. 06) 

22022 

events 

TP       FP              

FN      TN 

18485     255 

25     130780 

9136         12 

582   139726 

7575          2 

56    141817 

10176       0 

62   139265 

3631         0 

63   146055 

9                0 

0        49363 

34           22 

13     21953 

 

 

4. Results and Discussion 

 

4.1 System Performance Evaluation - ROC curve  

 

The performance of the prototype IDS system has been evaluated in [27]. In a two-class problem there 

are two possible types of error that may be made in the decision process. If class ω1 is termed the 

positive class and class ω2 the negative class, then ε1 is referred to as the false negative rate (or error of 

Type I), the proportion of positive samples incorrectly assigned to the negative class and ε2 is the false 

positive rate (or error of Type II), the proportion of negative samples classed as positive. The Neyman-

Pearson decision rule is to minimize the error ε1 subject to ε2 being equal to a constant, a, say. Using 

different terminology, the Neyman-Pearson decision rule is to maximize the detection probability PD 

(PD=1-ε1), while not allowing the false alarm probability (PF) to exceed a certain value. 

Using the Neyman-Pearson decision rule we calculated the detection probabilities (PD) and therefore 

the missed probabilities (1-PD) for different accepted false alarm rates (PF). Table 4 displays these 

results and Fig. 3 displays the Receiving Operating Characteristic curve (ROC) of the prototype system 

based on the results of Table 4. 

From the ROC curve one can verify visually, that with a PF of around 15% a maximum detection (PD) 

of about 92% is achieved (upper left point of the curve). This is the best trade-off between the false 

alarm rate and the detection rate of the developed prototype system. 

 

Table 4.  False alarm, Detection and Missed probabilities of the prototype system 

 

PF = α PD 1-PD 

0.05 0.8053 0.1947 

0.10 0.8829 0.1171 

0.15 0.9247 0.0753 

0.20 0.9337 0.0663 

0.25 0.9426 0.0574 

0.30 0.9515 0.0485 

0.35 0.9584 0.4160 

0.40 0.9599 0.0401 

0.45 0.9614 0.0386 

0.50 0.9629 0.0371 

0.55 0.9644 0.0356 

0.60 0.9659 0.0341 

0.65 0.9662 0.0338 

0.70 0.9666 0.0334 

0.75 0.9666 0.0334 

0.80 0.9668 0.0332 

0.85 0.9670 0.0330 

0.90 0.9672 0.0328 

0.95 0.9674 0.0326 
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Figure 3. Receiving Operating Characteristic (ROC) curve of the prototype system 

 

 

4.2 Comparison of EANN and ANN classifiers 

 

Fig. 4 shows the performance of the EANN hybrid expert system versus the original Artificial Neural 

Network (ANN).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Comparison of EANN and ANN classifiers 

 

The near straight line indicates the stable performance (93.50%) of the EANN. Initial training was done 

with only 1000 epochs and a SSE limit of 10-3. The other two lines show the performance of the simple 

ANN using the BP algorithm. We can distinguish the stochastic behaviour of the ANN’s performance. 

Using 1000 epochs and a SSE limit of 10-3 the ANN system performance rated between 50-87%, 

giving an average of 66.15% for 30 runs. Using 30,000 epochs and a SSE limit of 10-5 the ANN system 

performance rated between 85-94% giving an average of 92.52% for 30 runs. In the first version of the 

prototype system we used the latter combination, which had the drawback of a slow training cycle. 

Using the hybrid expert system with the GA approach for the weight optimization and test data 

different from the training set, a stable neural network performance of about 93.50% was achieved for 
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all 30 runs (red near straight line in Fig. 4). 

 

Figure 5.  Normal and malicious web traffic 

 

 

Figure 6.  Malicious only web traffic 

 

5. Conclusion 



e-Περιοδικό Επιστήμης & Τεχνολογίας                                                                                      
e-Journal of Science & Technology (e-JST) 

 

                               (4), 8, 2013                                                                                                                  12 

 

It is technologically impossible for any device to understand application communications or analyse 

application behaviour through deep inspection of IP packets, either individually or reassembled into 

their original sequence. Network firewalls and Intrusion Detection Systems (IDS) are useful for 

validating the format of application header information to ensure standards compliance. In addition, 

network-level security devices may detect a small number of known, easily identifiable attacks by 

looking for pre-programmed patterns (i.e. attack signatures) in an HTTP stream. 

 

Unfortunately, without any awareness of the HTML data payload or session context, devices that rely 

exclusively on the inspection of IP packets will fail to detect the vast majority of application-layer 

exploits. For example, IP packet inspection will not detect a hacker who has maliciously modified 

parameters in a URL (Universal Resource Locator) request.  

 

Network data analysis is a very important but a time consuming task for any administrator. A 

significant amount of time is devoted to sifting through text-only log files and messages generated by 

networks tools in order to secure networks. Artificial intelligence and visualization offer a powerful 

means of analysis that can help the security analyst uncover hacker trends or strategies that are likely to 

be missed with other non-visual methods.  

With our work we have contributed the following to artificial intelligence and network security: 

 

- Use of an Evolutionary Neural Network as a knowledge base for rapid classification of web 

attacks. The stable performance of the EANN establishes it as a better classifier for web 

intrusion than a simple neural network. 

- The application of automatic analysis methods before the interactive visual representation 

offers an intelligent visualization of web traffic that enables rapid perception and detection of 

unauthorized traffic. 

- A surveillance aid for the security analyst. 

- A visualization prototype system ideal for educational purposes and in understanding web 

server and web application security. 

 

This project has demonstrated that artificial intelligence considerably reduces the time required for data 

analysis and at the same time provides insights which might otherwise be missed during textual 

analysis. The web traffic surveillance could be expanded to other basic but popular internet services, 

such as email or DNS.  

Combining traditional or novel analytical methods with visual presentation techniques can generate a 

very robust approach to network security. Artificial intelligence and visual analytics can be 

incorporated in ID systems to produce more powerful security systems capable of dealing with new 

attack challenges and noisy data. This is undoubtedly the future in the ID area. 
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