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ABSTRACT 

Peristaltic pumping of a particle-fluid suspension in a catheterized circular tube has 

been investigated. The coupled differential equations for both the fluid and the 

particle phases have been solved and the expressions for the flow rate, pressure drop, 

friction forces at the tube and the catheter wall have been derived. It is found that the 

pressure drop, ∆p decreases with increasing flow rate, Q for any given value of the 

slip parameter, α Darcy number, K
1/2 amplitude ratio,  particle concentration and 

catheter size. Also for any given flow rate and the catheter size, pressure drop 

decreases with the particle concentration, and assumes significantly higher magnitude 

in a catheterized tube than its corresponding value in uncatheterized tube. The friction 

forces, F (at tube as well as the catheter wall) possess characteristics similar to the 

pressure drop (an opposite characteristics to the pressure rise) with respect to any 

parameter. The friction force at the tube wall is found to be significantly higher in 

magnitude than the corresponding friction force at the catheter wall. 
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INTRODUCTION 

 

Radhakrishnamacharya (1982) studied long wavelength approximation to peristaltic 

motion of a power law fluid. The inertia – free peristaltic flow with long wavelength 

analysis was given by Shapiro et al. (1969). The early developments on the 

mathematical modeling and experimental fluid mechanics of peristaltic flow were 

given in a comprehensive review by Jaffrin and Shapiro (1971). Beavers and Joseph 

(1967) developed boundary conditions at a naturally permeable wall. However, the 

rheological properties of the fluids can affect these characteristics .Flow through a 

porous medium have several practical applications especially in geophysical fluid 

dynamics. Examples of natural porous media are beach sand, sandstone, limestone, 

the human lung, bile duct, gall bladder with stones in small blood vessels. El 

Shehawey and Husseny (1999) and El Shehawey et al. (2000) studied the peristaltic 

flow of a Newtonian fluid thorough a porous medium. 

Caro, Pedley, Schroter and Seed (1978) studied the mechanics of the Circulation. 

Moreover, most of the physiological fluids are known to be non-Newtonian. Very 

little attention has also been paid to the peristaltic flows of non-Newtonian fluids. 

Shukla and Gupta (1982) was studied the peristaltic transport of a power- law fluid 

with variable consistency. Peristaltic transport of non - Newtonian fluids with the 

application to the vas deferens and small intestine was studied by Srivastava. 

Consequently, peristaltic transport of power law fluid has been discussed by 

Srivastava and Srivastava (1988) with the application to the ducts deferens of the 
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reproductive tract. The non - Newtonian peristaltic flow using a constitutive equation 

for a second order fluid has been investigated by Siddiqui et al. (1991) for a planar 

channel and by Siddiqui and Schwarz (1994) for an asymmetric tube. They have 

performed a perturbation analysis with a wave number, including curvature and 

inertia effects .In further investigation many authors have used one of the 

simplification is that they have assumed blood to be a suspension of spherical rigid 

particles (red cells), this suspension of spherical rigid particles will give rise to couple 

stresses in a fluid. No effort in literature has been made to understand the peristaltic 

flow of a Newtonian Fluid in a channel with permeable walls. 

The aim of the present investigation is to study the peristaltic transport in a circular 

cylindrical tube with permeable wall. 

 

FORMULATION OF THE PROBLEM 

 
Consider the flow of a Newtonian fluid through a circular cylindrical tube with 

permeable wall. The tube wall is assumed to be flexible and the flow is induced by a 

sinusoidal wave travelling down its wall. The geometry of the wall surface is 

described (Fig. 1) as 

 

                                     
Fig. 1 Geometrical representation of peristaltic waves in a  

circular cylindrical tube with permeable wall. 

 

                                                             (1) 

 

Where ‘a’ is the radius of the tube, ‘b’ is the amplitude of the peristaltic wave, ‘ ’ is 

the wavelength, ‘c’ is the wave propagation speed, ‘t’ is the time and ‘z’ is the axial 

coordinate. 

The equations governing the flow of a Newtonian fluid are the linear momentum and 

the conservation of man and are stated as 

 

                                  (2) 

 

                               (3) 

 

                                                                                                 (4) 
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Where (U, V) are the (axial, radial) components of velocity of the fluid, ( ) are the 

(density, viscosity) of the fluid, ‘P’ is the pressure and (z, R) are two-dimensional 

cylindrical polor coordinate. 

The flow induced by the peristaltic wave is unsteady in the fixed frame of reference 

(Z, R). However if one chooses a moving frame reference (z, r) with the speed of the 

peristaltic wave, ‘c’ in z-direction, two flow can be treated as steady. The 

transformation from a fixed to the moving frame of reference in coordinates are z= Z 

– ct and r=R, and in the velocity components are u= U – c and v = V. For the pressure 

is p(z, r) = P(Z, R, t) and the dimensional equation of the tube wall in the moving 

frame is 

                                                                                                (5) 

 

The equations of motion Eqns. (2) – (4) governing the flow in the moving frame of 

reference assume the form 

 

                                             (6) 

 

                                          (7) 

 

                                                                                                   (8) 

 

An introduction of the following dimension less variables 

 

, ,    ,   ,        

 =    . 

 

Into eqns. (6) – (8), yields after dropping primes 
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Where  and  are respectively the Reynolds number and the wave 

number. 

When the wavelength is large, the Reynolds number is quite small and therefore the 

inertial convective acceleration terms may be neglected (Shapiro et al., 1969). Using 

thus the long wavelength approximation (i.e.,  ), and neglecting the inertial term. 

Eqns. (9) – (11), take the form 
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The non-dimensional boundary conditions for the solution of the problem may now be 

stated (Beaver and Joseph, 1976, Srivastava et al., 2012) as 

 

                     1 Bu u    at 1 2r h Sin z                                                  (14) 

                              ( )B porous

u
u u

r k


 


 at r h                                                (15) 

                                     0
u

r





at 0r                                                                (16) 

 

Where  is the non-dimensional slip velocity at the tube wall,  is the slip 

parameter,  is the Darcy number and . 

 

ANALYSIS  
 

In order to solve the problem analytically, we integrate equation (12) which yields 

 

                                            
1

2

r dp du
C

dz dr
                                                            (17) 

                                                                                                                                                       

The boundary condition on (16), i.e.,  at  , demands that 

 

                                           1C = 0                                                                  

Substitution of 1C = 0 into equation (17), derives 

 

                                    
2

r dp du

dz dr
                                                                 (18) 

 

Integrating now equation (18), w.r.t. r, one obtains 

 

                                
2

2
4

r dp
C u

dz
                                                            (19) 

 

An application of the boundary condition (14) into equation (19), yields 

 

                                                                                            (20) 

 

Substituting  into eqn. (19), we obtain the expression for velocity of the fluid as 

 

                                       2 21
1

4
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Now differentiating  with respect to  and using the boundary condition (15), we 

obtains  
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Substitution of the value of Bu  from eqn. (22) into the equation (21) yields the 

expression for velocity in to non-dimension form as: 

 

                                2 21 2
1 [ 4 ]

4

dp h k
u h r k

dz 
                                                (23) 

 

The non-dimensional flow flux  is now derived as: 
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Following the report of Shapiro et al. (1969), the mean volume flow rate, Q at each 

cross-section over one period of the wave, is determined as  

 

                                   
21 / 2Q q                                                                 (26)   

             

Substituting the value of  from (26) into the eqn. (25), one obtains                                                                                                                                       

An use of relation (25) into equation (24), derives  
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The pressure drop, Δp = p (0) - p (1) across one wave length is calculated as: 
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The non-dimensional frication force,  is now obtained as: 
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The pressure-flow rate and the friction force-flow rate relationships from eqn. (28) 

and (31) are derived as:                                                                                                                                                     

                                      2 2
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The pressure rise ( ) for zero time-mean flow and the time mean flow for zero 

pressure rise, which are of particular interest, are given as 
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It is to note here that when the tube wall is impermeable (i.e., k=0), in the integrals 

involved in the results obtained in eqns. (28) and (31) become integrable in the 

derived form and one obtains the expressions for the pressure drop,  and the 

friction force,  as: 
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Which the same results are as obtained for the peristaltic flow of a Newtonian fluid in 

an axisymmetric tube by Shapiro et al. (1969). 

 

NUMERICAL RESULTS AND DISCUSSION 

 
To observe the quantitative effect of various parameters involved in the results of the 

study, computer codes are now developed to evaluate the analytical result obtained for 

the pressure drop, ∆p and the friction force, F in equations (37) and (38), respectively. 

The parameters values are chosen as: Q (flow rate) = 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 

1.6; ϕ (amplitude ratio) = 0, 0.2, 0.4, 0.6; α (slip parameter) α = 0.1, 0.2, 0.3, 0.4, 0.5; 

and K
1/2

 (here and after called Darcy number) = 0, 0.1, 0.2, 0.3, 0.4, 0.5. Some of the 

critical results obtained are displayed graphically in Fig. 2 - 13. It is worth mentioning 

that the present study corresponds to a two-dimensional channel case of Shapiro et 

al.(1969) and to classical Poiseceille flow for parameter values K
1/2

 = 0 and    = 0, 

K
1/2

 = 0; respectively. 

 

Fig. 2 reveals that the pressure drop, ∆p decreases with increasing flow rate, Q for any 

value of the amplitude ratio, ϕ and for a given value of the slip parameter, α, and the 

Darcy number, K
1/2. One observe from Fig. 3 that for a given value of the slip 

parameter, α, the pressure drop, ∆p, decreases with increasing flow rate, Q when 

channel walls are permeable(i.e.; K
1/2 

≠ 0). However, the flow characteristic ∆p 

increase with flow rate, Q when channel walls are impermeable (i.e.; K
1/2

 = 0) for any 

value of the amplitude ratio, ϕ. We notice from Fig. 4 that in the absence of the 
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peristaltic waves, (i.e.; ϕ = 0), the pressure drop, ∆p decrease with increase flow rate, 

Q for small values of the slip parameter, α (in the absence of the peristaltic waves i.e.; 

ϕ = 0) but increases with flow rate, Q for large values of the slip parameter, α. The 

flow characteristic, ∆p decrease with Q for every value of the slip parameter, α in the 

presence of the peristaltic waves (i.e.; ϕ ≠ 0). From Fig. 5, one observe that when the 

channel walls are impermeable (i.e.; K
1/2

 = 0), the pressure drop, ∆p decrease 

indefinite with amplitude ratio, ϕ, but increase with ϕ. 

 

Fig. 6 reveals that the pressure drop, ∆p decreases with the Darcy number, K
1/2

 from 

its maximal magnitude at Darcy number K
1/2

 = 0 (impermeable channel walls) to a 

minimal value achieved in the range of 0.1 ≤ K
1/2 

≤ 0 and afterwards it approaches to 

an asymptoric magnitude with increasing Darcy number, K
1/2

. For a given value of the 

Darcy number, α, the pressure drop ∆p decreases assumes a minimal value and the 

increases in the range of values of the slip parameters 0.1 ≤ α ≤ 0.2. The flow 

characteristic, ∆p increases steeply  beyond this range and achieved a maximal and 

afterwards again deceases rapidly with increasing slip parameter, α foe any value of 

the amplitude ratio, ϕ and the flow rate Q,(Fig. 7). 

 

One observe that the friction force, F decreases with increasing flow rate Q for a 

given value of the slip parameter, α and the Darcy number, K
1/2

(Fig. 8) one notices 

from Fig.9 that friction force, F decreases with increasing flow rate, Q in the case of 

permeable channel walls (i.e.; K
1/2

 ≠ 0) but increase when channel walls are 

impermeable (i.e.; K
1/2

 = 0). From Fig. 10, we observe that the friction force, F 

decreases with increasing flow rate, Q but increases with the flow rate, Q in the 

absence of the peristaltic waves (i.e.; ϕ = 0) .However. The flow characteristic, F 

decreases with increasing flow rate, Q in the presence of the peristaltic waves (i.e.; ϕ 

≠ 0).  The friction force, F decreases indefinitely with increasing amplitude ratio, ϕ for 

impermeable channel walls (i.e.; K
1/2

 = 0), but the flow characteristic, F increases 

with amplitude ratio, ϕ, when the channel walls are permeable (i.e.; K
1/2

 ≠ 0, Fig. 11). 

An inspection of Fig. 12 reveals that the friction force, F deceases from its maximal 

values at Darcy number, K
1/2

 = 0 to a minimal magnitude achieved in the range of 

values of slip parameter 0.1 ≤ α ≤ 0.2 and afterwards approaches to an asymptotic 

value with increasing slip parameter, α. The friction force, F declasses the flow 

characteristic, ∆F increases steaply beyond this range and achieved a maximal and 

afterwards again decreases rapidly with increasing slip parameter, α for any given 

values of the amplitude ratio, ϕ, and the flow rate, Q,(Fig. 13).  
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Fig. 2 Variation of pressure drop,  with flow rate, Q for different . 

    

 
Fig. 3 Variation of pressure drop,  with flow rate, Q for different Darcy number 
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Fig. 4 Variation of pressure drop,  with flow rate, Q for different slip parameter,  

 

Fig. 5 Variation of pressure drop,  with amplitude ratio,  for different Q and  
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Fig. 6 Variation of pressure drop,  with Darcy number,  for different Q and  

 

 

 
 

Fig. 7 Variation of pressure drop,  with slip parameter,  for different Q and  
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Fig. 8 Variation of friction force, F with flow rate, Q for different  

 

 

 
Fig. 9 Variation of friction force, F with flow rate, Q for different Darcy number, 

. 
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Fig. 10 Variation of friction force, F with flow rate, Q for different slip parameter, . 

 

 

Fig. 11 Variation of friction force, F with amplitude ratio, for different Q and . 
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Fig. 12 Variation of friction force, F with Darcy number   for different Q and . 

 

 
Fig. 13 Variation of friction force, F with slip parameter,  for different Q and . 

 



e-Περιοδικό Επιστήμης & Τεχνολογίας                                                                                      
e-Journal of Science & Technology (e-JST) 

 

                               (3), 8, 2013                                                                                                                  20 

 

CONCLUSIONS 

 
Quantitative effect of parameters such as pressure drop and the friction force have 

been obtained for certain values of flow rate, amplitude ratio, slip parameter and 

Darcy number.  

The graphical results reveal that the pressure drop decreases with increasing flow rate 

for any value of the amplitude ratio and for a given value of the slip parameter and 

Darcy number. It is further observed that for a given value of slip parameter, pressure 

drop decreases with increasing flow rate when the tube wall are permeable but the 

pressure drop increase with flow rate when tube walls are impermeable for any value 

of the amplitude ratio. Further observations revel that when the tube walls are 

impermeable the pressure drop decreases indefinitely with amplitude ratio but it 

increases with amplitude ratio. During the above study variation of pressure drop with 

flow rate in the absence and presence of peristaltic waves have been taken up. We 

notice that in the absence of the peristaltic waves the pressure drop decreases with 

increase in flow rate for small values of the slip parameter but increases with flow rate 

for large values of the slip parameter. However the flow characteristic decreases for 

every value of the slip parameter in the presence of the peristaltic waves. 

The plot depicting variation of pressure drop with Darcy number reveals that the 

pressure drop decreases with the Darcy number from its maximum magnitude for 

impermeable tube walls to a minimum value and thereafter it approaches to an 

asymptotic magnitude with increasing values of Darcy number. For a given value of 

the Darcy number the pressure drop decreases assumes a minimal value and then 

increases in a specific range of values of the slip parameters. The flow characteristic 

increases steeply beyond this range which attains a maximum value and again steeply 

decreases with increasing slip parameter for any value of the amplitude ratio and flow 

rate. 

Friction force decreases with increasing flow rate for a given value of the slip 

parameter and Darcy number it also decreases with increasing flow rate in the case of 

permeable tube walls but increases when tube walls are impermeable. From the 

graphical variations it is observed that the friction force decreases with increasing 

flow rate but increases with the flow rate in the absence of the peristaltic waves. The 

flow characteristic (Friction Force) decreases with increasing flow rate in the presence 

of the peristaltic waves. The friction force decreases indefinitely with increasing 

values of amplitude ratio for impermeable tube walls but it increases with amplitude 

ratio when the tube walls are permeable. It is further observed that the friction force 

deceases from its maximum value to a minimal magnitude for a specific range of 

values of slip parameter and thereafter approaches to an asymptotic value with 

increasing slip parameter. The friction force increases steeply beyond this range and 

achieves a maximum value after which it again decreases rapidly with increasing slip 

parameter values for any given values of the flow rate and amplitude ratio.   
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