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Abstract-The flow of a two-layered Newtonian fluid induced by peristaltic waves in a 

catheterized tube has been investigated. The expressions for the flow characteristics- 

the flow rate, the pressure drop and the friction forces at the tube and catheter wall are 

derived. It is found that the pressure drop increases with the flow rate but decreases 

with the increasing peripheral layer thickness and a linear relationship between 

pressure and flow exists. The pressure drop increases with the catheter size (radius) 

and assumes a high asymptotic at the catheter size more that fifty percent of the tube 

size. The friction forces at the tube and catheter wall posses characteristics similar to 

that of the pressure drop with respect to any parameter. However, friction force at 

catheter wall assumes much smaller magnitude than the corresponding value at the 

tube wall. 

Keywords: Peripheral layer, pressure drop, friction force, catheter size, amplitude 

ratio. 

 

INTRODUCTION 

The flow induced by peristaltic waves in the wall of the flexible tubes has 

been the subject of engineering and scientific research since the first investigation of 

Latham (1966). Physiologists term the phenomenon of such transport as peristalsis. It 

is a form of fluid transport that occurs when a progressive wave of area contraction or 

expansion propagates along the length of a distensible duct containing liquid or 

mixture. Besides, its practical applications involving biomechanical systems such as 

heart-lung machine, finger and roller pumps, peristaltic pumping has been found to be 

involved in many biological organs including the vasomotion of small blood vessels 

(Srivastava and Srivastava, 1984). Shapiro et al. (1969) and Jaffrin and Shapiro 

(1971) explained the basic principles of peristaltic pumping and brought out clearly 

the significance of the various parameters governing the flow. A summary of most of 

the theoretical and experimental investigations reported up to the year 1983; arranged 

according to the geometry, the fluid, the Reynolds number, the amplitude ratio and the 

wave shape; has been presented in an excellent article by Srivastava and Srivastava 

(1984). The important contributions between the years 1984 and 1994 are cited in 

Srivastava and Saxena (1995). The literature beyond this and of recent years include 

the investigations of Srivastava and Srivastava (1997), Mekheimer et al. (1998), 

Srivastava (2002), Misra and Pandey (2002), Hayat et al. (2002,2003,2004,2005), 

Mekheimer(2003), Misra and Rao (2004), Hayat et al. (2005), Hayat and Ali 

(2006a,b), Srivastava (2007), Hayat and Coworkers (2008a,b), Ali and Hayat (2008), 

Medhavi and coworkers (2008a,b; 2009, 2010), and a few others. Except the few 

(Shukla et al., 1980; Srivastava and Srivastava, 1984; Srivastava and Saxena, 1995; 

Brasseur et al., 1987; Rao et al.1995; Mishra and Pandey, 2002; Medhavi and Singh, 

2008b, etc.), most of the studies conducted in the literature deal with the peristaltic 

flow problem of single-layered of a Newtonian or non-Newtonian fluid.  

The study of flow through a catheterized tubes is of immense practical 

applications in physiology and engineering. The use of catheters has become standard 
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tool for diagnosis and treatment in modern medicine. An inserted catheter in an artery 

increases the impedance and modifies the pressure distribution and alters the flow 

field. A brief review on the subject has recently been presented by Srivastava and 

Srivastava (2009). The geometrically similar problem of peristaltic pumping to study 

the effects of inserted catheter on ureteral flow was analyzed by Roos and Lykoudis 

(1970). A number of authors including Hakeem et al. (2002), Hayat and coworkers 

(2006, 2008a, b), Srivastava (2007), etc. have explained the effects of an endoscope 

on the flow behavior of chyme in gastrointestinal tract. It is known from the published 

literature that studies conducted so far have considered the flow of a single-layered 

fluid in a catheterized tube. It is however, regretted that no efforts, at least to the 

authors knowledge, has been made to study the flow of a two-layered fluid through a 

catheterized tube. With the above discussion in mind, an attempt is therefore made 

here in the present paper to study the peristaltic induced flow of a two-layered 

Newtonian fluid in a catheterized tube. Mathematical model corresponds to the flow 

of a two-layered fluid through an annulus. The outer layer (peripheral) is a Newtonian 

fluid of constant viscosity and the inner layer (core region) is also a Newtonian fluid 

(the viscosity of which may vary depending on the flow conditions). The study is 

aimed at possible application of peristaltic induced flow of blood (Saran and Popel, 

2001) in catheterized small vessels and chyme in small intestine with an inserted 

endoscope (Srivastava, 2007). 

 

FORMULATION OF THE PROBLEM 

Consider the axisymmetric flow of a two-layered fluid in a catheterized tube 

of radius a, consisting of a central core region of radius a1 filled with a Newtonian 

fluid of viscosity µc, and a peripheral layer of thickness a- a1 filled with a Newtonian 

fluid of constant viscosity µp. The tube wall is assumed to be flexible and the flow is 

induced by a sinusoidal wave traveling down its wall. The catheter is assumed to be a 

co-axial rigid circular cylinder of radius ac. The geometry of the wall surface is 

described (Fig. 1) as 

                                             ct),(z
λ

2π
sinbat)H(z,                                           (1) 

where b is the wave amplitude, λ is the wavelength, c is wave propagation speed, z is 

the axial coordinate and t is the time. 

                                 
        Fig.1 Flow geometry of a two-layered peristaltic pumping in a catheterized tube . 
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The equations governing the linear momentum and the conservation of mass 

for the fluid in the two regions (peripheral and core) using a continuum approach are 

expressed (Misra and Pandey, 2002; Sharan and Popel, 2001) as 
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where 
2 = 222 /)/()/1(/ zrrr   is the two-dimensional Laplacian operator, 

( pu , pv ) and ( cu , cv ) are (axial, radial) components of fluid velocity in peripheral and 

central regions, respectively, )ρ,(ρ cp the fluid density in the (peripheral, central) 

regions, r is the radial coordinate and p is the pressure. In view of the argument stated 

in Misra and Pandey (2002) and Medhavi and Singh (2008b), one may now assume 

ct)(z /λsin2πbaH 111  in which 1b  is the amplitude of the interface wave. 

Introducing the following dimensionless variables 
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in to the equations (2) and (7), yields 
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where Re= pρ ca/ cμ

 

 and  =a/  are Reynolds number and wave number, 

respectively. 

The Reynolds number, Re is quite small when wavelength is large, and 

therefore, inertial convective acceleration terms may be neglected in comparison to 

viscous terms (Shapiro et. al, 1969; Jaffrin and Shapiro, 1971).Using thus the long 

wavelength approximation (i.e.,  <<1) of Shapiro et al. (1969), and neglecting the 

inertial terms, the equations of motion in the moving frame of reference (moving with 

the speed of the wave) may be written as 
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The non-dimensional boundary conditions are 
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where r/uμτ ppp  and r/uμτ ccc  are shearing stresses of the peripheral and 

core the regions, respectively. The boundary conditions stated in eqns. (16)-(18) are 

the standard no slip condition on the tube wall and continuity of velocity and shear 

stress at the interface. 

ANALYSIS 

 

The solution of the equations (14) and (15) subject to the boundary conditions 

(16)-(18), yields the expression for the velocity of peripheral and core fluids as  
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The non-dimensional instantaneous volume flow rate q (=q’/πa
2
c, q’ being the 

flux in the moving system which is same as in stationary system) is calculated as  
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Using now the fact that the total flux is equal to the sum of the fluxes across 

the regions: 1hrε   and hrh1   one derives the relations:  α1   and 

αhh1  ( Shukla et al., 1980; Medhavi and Singh, 2008b). An application of these 

relations into eqn. (10), yields 
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Following now Shapiro et al. (1969) and Medhavi (2010), the mean volume 

flow rate, Q over a period is determined as  

                                                    .ε2/1qQ 22                                              (12) 

 

The pressure drop, Δp = p(0) - p(1) across one wavelength is thus calculated as  
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The friction force Fa (= Fa’/ πλcµp; Fa’ is the friction force at the tube wall in 

the stationary system which is same as in moving system) across one wave length is 

now obtained as 
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The friction force at the catheter wall, Fc (= Fc’ / πλcµp; Fc’ being the friction 

force at the catheter wall in both the stationary and moving systems) across one wave 

length is now derived as 
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From eqns. (13)-(15), one derives the following relations of particular interest 

as 
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The pressure rise (-Δp) for zero time mean flow and the time mean flow for 

zero pressure rise which are of particular mechanical and physiological interest, are 

obtained from eqn. (16) as 
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It is to note here that under the limit, 0ε   (no catheter); the results derived 

above yield the same results as obtained in Shukla et al. (1980). With 1μ1,α  , 

one derives the results obtained in Medhavi (2010) for a single-phase Newtonian 

viscous fluid. With 1μ1,α   and 0ε  , the results of Shapiro et al. (1980) are 

recovered from the present study. 
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NUMERICAL RESULTS AND DISCUSSIONS 

 

In order to discuss the results of the study quantitatively, computer codes are 

developed to evaluate analytical results obtained in eqns. (13) – (15) for various 

parameter values selected (Shukla et al., 1980; Mishra and Pandey, 2002; Medhavi, 

2010) as: α= 1, 0.95, 0.90; µ= 0.1, 0.2, 0.3, 0.5, 1.0; ε = 0, 0.1, 0.2, 0.3, 0.4, 0.5;  = 

0, 0.2, 0.4, 0.6; Q= 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6. Present study reduces to a 

two-layered flow in the absence of the catheter (Shukla et al., 1980), single-phase 

Newtonian viscous fluid in catheterized tube (Medhavi, 2010 in the absence          
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Fig,3 Pressure drop, p versus flow rate, Q for different  

         and .

=.4

=0





=0.95

=0.3

_____ 

..........

Numbers 

0

.1

.3

.5

0

.1

.3

.5p

Q

 
of particle phase), single-phase Newtonian fluid in uncatheterized tube (Shapiro et al., 

1969) for parameter values: 0ε  , α=1, µ=1 in the absence of particle phase, 

respectively. 

Pressure drop, Δp increases with the flow rate, Q and a linear relationship 

between pressure and flow exhibits for any given set of parameters (Fig. 2). For any 

given flow rate, Q the flow characteristic, Δpdecreases with decreasing values of α 

(i.e., increasing peripheral layer thickness), however, depending on the magnitude of 

the non-zero amplitude ratio,  , this property reverses (Fig. 2). The pressure drop, 

Δp increases with increasing value of the catheter size, ε  for any given flow rate, Q 

(Fig. 3).With other parameter fixed, Δp  increases 
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Fig,4 Pressure drop, p versus flow rate, Q for different  
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with the peripheral layer viscosity, µ for higher values of the flow rate, Q but the 

property reverses for small values of the flow rate, Q depending on the non-zero value 

of the amplitude ratio,   (Fig. 4). The variation of the pressure drop, Δpwith respect 

to the peripheral layer viscosity, µ seems to have similar characteristics as with the 

peripheral layer thickness, α (Figs. 2 and 4).  

The pressure drop, Δp  assumes higher magnitude for higher values of the 

catheter size, ε  for any given flow rate, Q in the absence of the peristaltic waves (i.e., 

 = 0). However, in the presence of peristaltic waves, Δp  assumes higher magnitude 

only for non-zero value of the catheter size, ε  (Fig. 5). The flow characteristic, 

Δpdecreases indefinitely with increasing amplitude ratio,   for any given set of other 

parameters (Fig. 6).  The pressure drop, Δp  decreases from its value in the absence of 

the catheter (i.e.  ε = 0) and achieves a minimum value                                     



e-Περιοδικό Επιζηήμης & Τεχνολογίας                                                                                      
e-Journal of Science & Technology (e-JST) 

  

http://e-jst.teiath.gr                                                                                    37 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

-15

-10

-5

0

5

10

15

20

25

30
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at about ε = 0.2, it then increases rapidly with increasing catheter size and assumes a 

high asymptotic magnitude when ε > 0.5 in the presence of the peristaltic waves (i.e., 

   0) but in the absence of the peristaltic waves (i.e.,  = 0), Δp  increases with ε  

(Fig. 7). 

The friction force at the tube wall, aF increases with the flow rate, Q for any 

given set of parameters (Fig. 8). Also aF decreases with the amplitude ratio,   (Fig. 
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9). One notices that the friction force at the catheter wall, cF
 
possesses characteristics 

similar to that of aF with respect to any parameter but its magnitude is much lower 

than the corresponding magnitude of aF (Fig. 10). An inspection of Figs. 2, 8 and 10 

reveals that aF  and cF possess characteristics similar to that of the pressure drop, Δp  

with respect to any parameter. 
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 versus flow rate, Q for 
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 versus flow rate,  for 
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CONCLUDING REMARKS 

 

The flow induced by peristaltic waves of a two-layered Newtonian fluid in a 

catheterized tube has been addressed. The effects of the inserted catheter and the 

peripheral layer thickness has been observed simultaneously through out the 

analysis.The informations that the pressure drop increases with the catheter size and 

decreases with the parameter  (i.e., increasing peripheral layer thickness) may be 

noted as important observations. However, the study conducted above carries certain 

assumptions and approximations including the long wavelength  
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approximation and constant peripheral layer thickness. It is well known from the 

literature that the Reynolds number is quite small when the wavelength is long in 

most of the physical situations, particularly in biological organs (Misra and Pandey, 

2002). This allows the inertia-free flow and fully developed flow equations (Shapiro 

et al., 1969). Further, some comments need to be made here regarding the shape of the 

interface. Misra and Pandey (2002) observed that the shape of the interface is not 

significantly affected when the viscosity of one of the layers is kept constant while the 

viscosity of the fluid in the other layer is varied. In view of the theoretical model used 

in the present work, the peripheral (outer) layer fluid viscosity, pμ remains constant 

throughout and it is only the viscosity of the core fluid, cμ  may vary depending on the 

flow conditions. This justifies the use of the constant value of the parameter, α (i.e., 

constant peripheral layer thickness). In view of the theoretical model used (Sharan and 

Popel, 2001) to conduct the study, it is strongly believed that the findings of the work 

may be used to discuss the flow of blood through catheterized artery by means of the 

peristaltic waves. 
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