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1. DEFINITIONS AND NOTATIONS

Let f(X) be a periodic function with period 27 and integrable in the sense of
Lebesgue over the interval [—7, 7] .The Fourier series associated with this function is

1 < .

f(x) ~ 5% > (a,cos nx+b,sin nx) (1.1)
n=1

where @, ,a, ,b, are known as Fourier trigonometric coefficients of f(x) and are

given by :

a, zljf(x)dx
”—ﬂ

a, :1 If(x) cosnx dx
7[—7[

n=12,3... (1.2)

b :ij‘f(x) sin nx dx
72-—7[

Let Zun(x) be an infinite series defined in[a,b] =[-7,7]. The n" partial
n=0

00 n
sum of the series » U, (x) isgivenby S, (X)=>"u,(x) V xe[a,b].
n=0 v=0
Let T = (a,,) be an infinite lower triangular matrix satisfying Silverman-

Toeplitz [6] conditions of regularity i.e.
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(i) >a,—>1 asnowo
k=0
(i) a,, =0 for k>n

n
and (iii) Y| a,, | < M where M is finite constant.
k=0

If there exists a bounded function S(X) such that
B00= Y an {S.00-500
= oil) as n— oo
uniformly V xe[a,b] then we say that the series iun(x) is summable (T)

n=0
uniformly in a<x<b to the sumS(x).

Particular Cases. The important particular cases of the triangular matrix means are:

. : 1
(i) Cesaro mean of order 1 or (C, 1) meanif a,, = 1 vk.
' n+

(i) Harmonic means when a,, = L :
’ (n—=k+2)logn

B
()

1 pL
(log) pfl(n ) gbg Yk +1) .

(iii)(C, 3) means when a,, =

(iv)(H, p) means when a,, =
(v) Nérlund means [1919] when &, = —pFTk where P, = p, . P, #0.
n k=0

(vi) Riesz means (N, p,)when a,, = % P, #0.
n

(vii)Generalised Norlund Means (N, p, q) when a,, = p”}i—qu .
where R, =>"p, 0, . R, #0.
k=0
We write p(t) = f(x+t)+ f(x—t)—2S(x), (1.3)
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®(t) = [|p(u)ldu (1.4)
0

A\ Zann - = Zank ! (1-5)

k=n—7

1

where 7_[ } integral part of E (1.6)
and K, ()= Zn: SIn(kJ: Bl : (1.7)

o sin

2. INTRODUCTION
Siddiqi [5] proved the following theorem:

TheoremA. If

t
D(t)= 0{ oa( %)} (2.1)

as t — +0, then the series (1.1), at t = X is summable (H) to f (x).

Singh [8] generalized the above theorem for (N, p,) summability in the
following form:

TheoremB. Under the condition (2.1), the Fourier series of f(t), at t=x, is
summable (N, p,)to f(x), where {pn} iS non-negative, non-increasing sequence
such that

n Pk
=0(P,)),
Zklogk (Fr)

k=a

where o >1 is a fixed positive integer.
Continuing the study for (N, p,)summability, Pati [7] has proved the
following therem:

TheoremC. If (N, p,) be a regular Norlund method, defined by a real, non-negative,
monotonic, non-increasing sequence of the coefficient{pn} such thatP, — o, and
logn=0(P,) as n — o then if

D) = i¢(t)dt _ O{H 22)

T

as t — 40, the Fourier series of f (t), at t = x is summable (N, p,) to f (x).

Dealing with uniform summability method, Saxena [2] established the
following theorem:
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TheoremD: If CD(t):o{ t } :
log( %)

uniformly in a set E in which S = S(x) is bounded, as t — +0, then the series (1.1)
is summable by Harmonic means uniformly in E to the sum S .

Saxena [3] generalizes above theorem for uniform No6rlund summability
method in the following form:

TheoremE: If x(t) stands for a function of t and «(t) ultimately increase steadily

witht,
TP 1
'!.a(PT)'fdt =0(P,),as n—>w, (2.3)
t
and d(t) _O(a(PT)j : (2.4)

uniformly in E in which S = S(X) is bounded, as t —+0, then the series (1.1) is
summable (N, p,) uniformly in E to the sum S .

3. MAIN THEOREM.

Quite a good amount of works are known for uniform harmonic as well as Norlund
summability of Fourier series. In this paper, a more general result than those of
Siddiqi [5], Saxena [2, 3], Pati [7], and Singh [8] has been established so that their
results come out as particular cases.

Theorem. Let T = (@,,) be an infinite triangular matrix such that the elements
(a,) are non-negative and  non-decreasing with kK<n  such

T n
that A, =>a,, .= D.a, . A,=1Vn.If
k=0

k=n-z

t t
du = o ————— |, 3.
J 1] 0{5(%)Iog(%)j -

uniformly in a set E = [a,b] in which S(x) is bounded, as t — +0, where &(t) is a
positive, monotonic increasing function of t such that

A, .du

u&(u)logu =00, (3.2)

e =)

<

as Nn—oo, for 0< o <1,then the Fourier series (1.1) is lower matrix summable (T)
uniformly in E = [a,b] to the sum S(x).
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4. LEMMAS.

We shall require the following lemmas for the proof of our theorem-
Lemmad4.1. Let K (t) be given by (1.7) then K (t)=0(n), 0<t<i.

n k 1
Proof: Kn(t)— Z sin(k+ )t

wr sin &
sin(k + 1)t

1< 3
_zan,k .
T k=0

t
sin &

|Kn(t)| =

n

< 2, )

sin
(2k +1)[sin 4|

sin ¢

1
27 i
<=l

2

(2n +1) Z

n,k

(n +1)

T

=0(n).

.M by Té6eplitz [6] condition of regularity

Lemma.4.2. If &,, isanon-negative and non-decreasing with k, then

ok SIN(k +3)t

=0(A,,) for O<%£t<5<7z.

n n— n
Proof: Y a,, sin(k+4)t|<|> a,, sin(k+)t+| D a,, sin(k+ )t
k=0 = k=n-r
n
< 1 i 1
2a,,, , Max TZsm(k +1)t + k;?n’k‘sm(k +3),
(by Abel’s Lemma)
a2
sin“(r+1)%
<2a. . |——— 2|+
n,n—7 Sin% An,’l'
x : 2an n-r
D agsin(k+ )t < —"+ A (4.1)
k=0 t
T n
Now A, = Zan,nik — Zan,k
k=0 k=n—7
=8pn FAnp st Anp
>(r+Da,,_.
a
> ”’t” T (since r=[])
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a,

TE=O(A,). 4.2)

Therefore

By (4.1) and (4.2), we have | a,, sin(k+)t|=0(A,,).
k=0

Lemma.4.3. If a,, is non-negative and non-decreasing with k <n and K, (t) is

given by (1.7) then Kn(t):O(A:JJ for 0 < % <t<dé<r.

Proof: Since for O<£§t<é‘<7z,sint2£,
n Vg

n sin(k + )t

We have |Kn(t)|=2i2an‘k
[O(AM)] from lemma (4.2)

7l sin &
1
S
ersmi
|Kn(t)|:O(A:”j.

n

a,, sin(k +3)t
k=0
cLor
2 t

Hence the lemma is proved.

5. PROOF OF THE MAIN THEOREM.

Following Titchmarsh [4], we have —

#(t)dt uniformlyin a< x<b.

S, (9~ £ () == [T

sin §
Then  t,(x)= > a,, {5, ()~ F (x)}

1R sin(k +3)t
= 0[2 AT }¢(t)dt

k=0 S 2

K. (t).¢(t)dt

O S | O

K, (t).g(t)dt + j' K, (t).g(t)dt +T K, (t).g(t)dt
=l +1,+1, uniforr:ﬂyin as<x<b.

By Riemann Lebesgue theorem and regularity conditions we get I ; =0(1) .
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Andnow |, = J‘ K, (t).¢(t)dt

< [IK, llpldt

= O(n).j|¢(t)|dt by lemma (4.1)

1 .
—O(n).o(ng(n) I0g nj , by condition (3.1).

( J
_O

= 0(1) as N —oo.

Now j K. (t).4(t)dt ,

S|

;

1] = <, ot

N
0@ HA: (D(t)} — di(%]ﬁb(t)dt}
An 0

. t |

j p(t)|dt

Slpt—

t A t tifd t
=07 log(%)]l ' I ( t j'o[é(%) log(%)]dt it [dt - )}0(5@ 'Og(%)]dt}

A 5 5
3] A, .dt 1

5 .d
g(;) Iog( 3) f(n) |09 n ‘[ 1) log( 1) J. g(%) Iog(%) (Aﬂr):|

 ——
1
3

<o0(1)

d(A.)

_o(1)+o()j

d(A..)
E(w)logu

tf( )| 9(1) ! l)| g(})
0]

oo tf(l)l g(l)

n n

1 1
=o(l k n,k
=000+ U§(U)|09(U) {5(;) 0(2) 41 J“{fm) o) A" j
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by mean value theorem for integrals
=0(1) as n— o0, by condition (3.2)
which completes the proof of the main theorem.

Particular cases.(a) Ifa, , = ! , £(t)=1 Vt, [a,b] ={x} then the

~(n—k+1)logn

result of Siddiqgi [5] becomes a particular case of our theorem.

(b) The result of Singh[8] is a particular case of our theorem if

a,, = p;—k =" p, and [a,b] ={x}, £(t) =1 V't
k=0

n

P
(c) If &, is defined as in case (b), [a,b] ={x} and &(t) :% then our theorem
, og

reduces to theoremC by Pati [7].
(d) If a,, and &(t)is defined as in case (a) and[a,b] =set E, then the result of

Saxena [2] is a particular case of our theorem.The condition of Saxena [2] is
analogous to the result of  Siddiqi [5].

() If &, is defined as in case (b) and S (t) =

a(P
g, [a,b] = set E, then the result
0

of Saxena [3] is a particular case of our theorem.
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