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Abstract- The effects of a composite stenosis on blood flow characteristics in an 
artery have been investigated. The flowing blood has been represented by a 
macroscopic two-phase model (i.e., a suspension of red cells in plasma). The 
expressions for the flow characteristics, namely, the impedance, the wall shear stress 
and the shear stress at the stenosis throat have been obtained. The effects of 
hematocrit on these flow characteristics have been discussed thoroughly and briefly. 
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INTRODUCTION 
Stenosis or arteriosclerosis is an abnormal and unnatural growth that develops 

at various locations of the cardiovascular system under diseased conditions, which 
occasionally results into serious consequences (Srivastava, 1995). The actual cause 
for the development of the frequently occurring cardiovascular disease, stenosis is 
related to the nature of blood movement and the mechanical behavior of the blood 
vessel walls. It is well known that the fluid dynamical parameters, particularly the 
high wall shear stress play an important role in the genesis of the disease, although the 
root causes of the formation of stenotic lesions are not well understood. It is well 
established that once the constriction has developed, it brings about the significant 
alterations in the flow field, pressure distribution, wall shear stress and the flow 
resistance (impedance). With the advent of the discovery that haemodynamic factors 
play an important role in the genesis and proliferation of the disease has attracted the 
early investigators including Young (1968), Young and Tsai (1973), Deshpande et.al. 
(1976), Caro et.al. (1978), Ahmed and Giddens (1983), and several others to study the 
blood flow through local constrictions, since the first investigation of Mann et.al. 
(1938). A brief account of researches on the topic, reported so far, may be had from 
Young (1979), Srivastava (1995), Sarkar and Jayaraman (1998), Ku (1997), 
Ponalagusamy (2007), Mishra and Verma (2007), Mekheimer and El-Kot (2008), etc. 
The recent years investigation includes the studies of Sankar and Lee (2009), 
Srivastava and coworkers (2009, 2010), Singh et al. (2010), Biswas and Chakraborty 
(2010a,b), Medhavi (2011), Mishra and Siddiqui (2011), Nadeem et al. (2011), 
Mekheirmer et. al. (2011), Ponalagusamy and Selvi (2011), Bandyopadhyay and 
Layek (2011, 2012), Srivastava et al. (2012) and many others. 

It is known that blood behaves like a non-Newtonian fluid (Merill et al., 1965; 
Charm and Kurland, 1965, 1974; Hershey, et al., 1964; Huckaba and Hahu, 1968) at 
low shear rates. The theoretical study of Haynes (1960) and experimental 
observations of Cokelet (1972), however, indicate that blood can no longer be treated 
as a single-phase homogeneous viscous fluid in narrow arteries (of 
diameter μm 1000 ). The individuality of red cells (of diameter μm 8 ) is important in 
such large vessels with diameter up to 100 cells diameter (Srivastava and Srivastava, 
1983). A brief survey of the literature on multiphase blood flow has been presented by 
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Srivastava (2007). A survey of the literature on arteriosclerotic development reveals 
that the studies conducted are mainly concerned with the single symmetric and non-
symmetric stenoses. However, the stenosis may develop in series (multiple stenoses) 
or may be of irregular shapes or bell shaped or of composite in nature, etc. An attempt 
is made in the present investigation to explore the effects of a composite stenosis on 
the flow characteristics of blood taking into account that the flowing blood is 
represented by a macroscopic two-phase fluid (i.e., a suspension of erythrocytes in 
plasma). 

 
FORMULATION OF THE PROBLEM 

 
Consider the axisymmetric flow of blood through a composite stenosis in an 

artery of circular cross-section. The geometry of the composite stenosis, assumed to 
be manifested in the arterial wall segment is described (Fig.1) as  
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where  and R0 are respectively, the radius of the artery with and without 

stenosis, L0 is  the length of the stenosis and d indicates its location,  is the 
maximum projection in the lumen located at z=d+L0/2. 

                   
                                           Fig. 1 Geometry of a composite stenosis in an artery. 
   

Blood is assumed to be represented by a two-phase macroscopic model, that 
is, a mixture of plasma and erythrocytes (red cells). The equations describing the 
steady flow of a two-phase macroscopic model of blood may be expressed (Srivastava 
and Srivastava, 1983, 1989) as   
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where 2 = 222 z/r)/((1/r)r/   as a two-dimensional Laplacian operator, r is 

the radial coordinate measured perpendicular to the axis of the tube. ( ff v,u ) and 

( pp v,u ) are the (axial, radial) components of the fluid and particle velocities, 

respectively, C denotes the volume fraction density of the particles, p is the pressure, 

sμ (C) ~ sμ is the mixture viscosity (apparent or effective viscosity) , S is the drag 

coefficient of interaction for the force exerted by one phase on the other, 

pf ρandρ are the actual density of the material constituting the fluid (plasma) and the 

particle (erythrocyte) phases, respectively, (1-C ) fρ  is the fluid phase and C pρ  is 

particle phase densities,  and the subscripts f and p denote the quantities associated 
with the plasma (fluid) and erythrocyte (particle) phases, respectively. The 
expressions for drag coefficient of interaction, S and the viscosity of the suspension, 

sμ  for the present study are selected (Srivastava and Srivastava, 2009; Charm and 

Kurland, 1974) as 
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                   m=0.070 exp [2.49C+ (1107/T) exp (-1.69C)],                  (9) 
 
where T is the measure in absolute scale of temperature (oK) , oμ  is the constant 

plasma viscosity and oa  is the radius of a red cell. 
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The equations governing the laminar, steady, one-dimensional flow of blood 
in an artery in the case of a mild stenosis (i.e., 1)δ/R 0   are derived (Young ,1968 ; 

Srivastava and Rastogi, 2009), from equations (2)-(7) as  
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The boundary conditions for the problem are now stated as 
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ANALYSIS 
 

  An integration of equations (10) and (11) under the boundary conditions (12) 
and (13), yields the expressions for velocity profiles, fu  and pu  as  
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The volumetric flow rate, Q is now calculated as 
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The closed form analytical evaluation of the second and the third integrals in 

the expression for ψ  obtained above are almost formidable tasks and therefore shall 
be evaluated numerically. However, the analytical evaluation of the first and the 
fourth integrals are straight forward. Using the definitions from the published 
literature (Young, 1968; Srivastava and Rastogi, 2009), the expressions for the 
impedance (flow resistance),λ , the wall shear stress in the stenotic region, wτ , and 

the shearing stress at the stenosis throat, sτ   are derived as                                                                            
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0λ  and 0τ are the flow resistance and wall shear stress for a normal artery ( no 

stenosis ) in the absence of the  particle phase (i.e. C = 0, Newtonian fluid). 
  In the absence of the particles (i.e. C=0), the results for a Newtonian fluid are 
derived from equation (20)-(22), as  
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NUMERICAL RESULTS AND DISCUSSIONS 

 
Computer codes are now developed to evaluate analytical results obtained in 

equations (20)-(22) at the temperature of 37oC in a tube of radius 0.01cm in order to 
observe the quantitatively effects of the hematocrit and other parameters on the blood 
flow characteristics for various parameter values (Young,1968; Srivastava, 1995 and 
Srivastava and Rastogi, 2009): d(cm) = 0; L0 (cm ) = 1; L(cm) = 1, 2, 5 ; C = 0, 0.2, 
0.4, 0.6; 0δ/R =0, 0.05, 0.10, 0.15, 0.20. It is worth mentioning that present study 

corresponds to the case of a Newtonian fluid and no stenosis for parameter values 
C=0 and 0δ/R = 0, respectively. 

For any given stenosis height, 0δ/R , the impedance, λ  increases with the 

hematocrit, C, and also for any given hematocrit, C, λ  increases with the stenosis 
height, 0δ/R (Fig.2). The blood flow characteristic,λ  decreases with the increasing 

tube length, L for any given stenosis height, 0δ/R and hematocrit, C. This in turn 

implies that the impedance, λ  increases with the stenosis length, Lo for any given set 
of other parameters (Fig.3). One notices that the blood flow characteristic, λ  
increases steeply with the hematocrit, C for any given stenosis height, 0δ/R  (Fig.4).  
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for any given stenosis height, 0δ/R  (Fig.6). It is important to note here that the blood 

flow characteristic, wτ  increases rapidly in the upstream of the stenosis throat (located 

at d+Lo/2) and achieves its peak magnitude at the throat. The shear stress, wτ  

asymptotically decreases in the downstream of the throat and achieves a very little 
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lower magnitude than its value at the throat at the end point (i.e., at z/Lo=1) of the 
constriction profile (Figs. 5 & 6). The shear stress at the stenosis throat, sτ  increases 

with the hematocrit, C for any given stenosis height, 0δ/R , and also sτ  increases with 

the stenosis height, for any given hematocrit, C (Fig. 7). The blood flow 
characteristic, sτ  increases steeply with the hematocrit, C for any stenosis height, 

0δ/R (Fig.8). The variations in sτ are found to be similar to that of the flow resistance, 

λ  with respect to any parameter.  
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