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Abstract 

The problem of blood flow through a composite stenosis  in arteries has been 

investigated in the present work. To account for the non-Newtonian behavior, blood has 

been represented by a power-law fluid. The expression for the flow characteristics, 

namely, the impedance, the wall shear stress, the shear stress at the stenosis throat has 

been derived. We present some results concerning the dependence of these quantities on 

the geometrical parameters. 
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INTRODUCTION 

Cardiovascular diseases are known to be responsible in most of the cases of 

deaths and stenosis or arteriosclerosis (narrowing of any body passage, tube or orifice), 

is one of the common diseases. It is an unnatural and abnormal growth in the lumen of 

arterial wall segments, develops at various location of the cardiovascular system under 

the diseased conditions. Although the etiology of the initiation of the stenosis is not well 

understood, it has been suggested that the deposit of cholesterol on the arterial wall and 

proliferation of connective tissue may be responsible for the development of the disease. 

Regardless of the cause, it is well established that once the constriction has developed, it 

significantly affects the supply of the blood in arteries which may results into serious 

consequences (myocardial infraction, angina pectoris, cerebral strokes, etc.). The flow 

accelerates and consequently the velocity gradient near the wall region is steeper due to 

the increased core velocity resulting in relatively large shear stress on the wall even for a 

mild stenosis in the region of narrowing arterial constriction. With the knowledge that 

hemodynamic factors play an important role in the genesis and the proliferation of 

stenosis, this Area of research has attracted the attention of investigators. Since the first 

investigation of Mann et al. (1938), a large number of studies including the important 

contributions of Young(1968,1979), Young and Tsai (1973), Caro et al. (1978), Shukla 

et al.(1980), Ahmed and Giddens (1983),  Sarkar and Jayaraman (1998), Pralhad and 

Schultz (2004), Jung et al. (2004), Liu et al. (2004) Srivastava and coworkers (1996, 

2009, 2010a,b,c), Mishra et al. (2006), Misra and Verma (2007), Ponalagusamy (2007), 

Layek et al. (2005, 2009), Joshi et al. (2009), Mekheimer and El-Kot (2008), Tzirtzilakis 

(2008), Mandal and coworkers (2005, 2007a,b), Politis et al. (2007, 2008), Singh et al. 

(2010), Medhavi (2011) and many others; have been conducted in the literature in 

various context. 

Being a suspension of corpuscles, blood behaves like a non-Newtonian fluid at 

low shear rate in small blood vessels (Hershey et al., 1964; Merill et al., 1965; Charm 

and Kurland, 1974). In particular, it has been pointed out that the flow behavior of blood 
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in small diameter tubes (less than 0.2mm) at less than 20 sec
-1 

shear rate, can be 

reasonably represented by a power-law fluid (Hershey et al., 1964; Charm et al., 1965; 

Huckaba and Hahn, 1968). In addition, a survey of literature on stenotic development 

indicates that most of the studies have been conducted are concerned with a single 

symmetric or non-symmetric stenoses. However, the recent observations Joshi et al., 

2009; Srivastava and Rastogi, 2010a) reveal that stenoses may develop in series 

(multiple stenoses) or may be of irregular shapes or overlapping or of composite in 

nature. The present research is therefore devoted to study the effects of a composite 

stenosis on blood flow characteristics assuming that the flowing blood is represented by 

a power law fluid. 

FORMULATION OF THE PROBLEM 

Consider the axisymmetric flow of blood through a composite stenosis in an 

artery of circular cross-section. The geometry of the composite stenosis, assumed to be 

manifested in the arterial wall segment is described (Fig.1) as  
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where  and R0 are respectively, the radius of the artery with and without 

stenosis, L0 is  the length of the stenosis and d indicates its location,  is the maximum 

projection in the lumen  

                    
                               

   Fig. 1 Geometry of a composite stenosis in an artery.   

 

located at z=d+L0/2. 

Blood is assumed to be represented by a non-Newtonion (power-law) fluid. 

Following the reports (Young, 1968; Srivastava, 1995) and considering laminar, steady, 

one dimensional flow of blood in an artery, the general constitutive equation in a mild 

stenosis case , may be written as  

                                                     ,r τ
r r

1

dz

dp




                                                            (4) 

where r is the radial coordinate measured normal to the tube axis and p is the pressure. 

The shear stress,  for a power-law fluid is given by 
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where u is the axial velocity of the fluid, m is the consistency, and n is the flow behavior 

index (when μmthen 1,n  is the Newtonion viscosity of the fluid). 

 

The boundary conditions are 
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ANALYSIS 

 

Using equation (5) into (4), the solution of equation (4) under the boundary 

conditions (6) and (7), yields the expression for velocity, u as  
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The volumetric flow rate Q is now calculated as  
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which yields  
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The pressure drop,Δp  L)zat  p0andzat  p(  across the stenosis in the tube 

of length, L is calculated as  
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The analytical evaluation of the first, second and the fourth integrals are straight 

forward where as the computation of third integral in the closed form in the expression 

for ψ  equation (12) is almost a formidable task and thus will be  evaluated numerically. 

Using the definitions from the published literature (Srivastava,1996), the expressions for 
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the impedance (flow resistance), ,λ the wall shear stress in the stenotic region,  wτ  and 

the shear stress at stenosis throat, wτ  are given as 

 

                                                        Δp/Q,λ                                                                (13) 

 

                                                       z,(-R/2)dp/dτw                                                     (14) 

 

                                                       z,(-R/2)dp/dτw                                                                              (15) 

 

Following now the reports of Young(1968) and Srivastava et.al.(2010a), the 

expression for impedance,

 

λ , the wall shear stress,

 
wτ  and shear stress at stenosis throat,

 
sτ , in their non-dimensional form are derived as  
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0λ  and 0τ  are the impedance and the shear stress for a power-law fluid in the normal 
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It is worth to mention here that results obtained above reduce to the corresponding 

results for a Newtonian fluid (Young, 1968) for the artery with a composite stenosis. 

 

      RESULTS AND DISCUSSION 

 

To discuss the results obtained above quantitatively, computer codes are 

developed to evaluate the analytical results obtained in equations (16)-(18). The various 

parameter values are selected (Young, 1968; Srivastava, 1996; Hershey et.al., 1964; 

Charm and Kurland, 1974) as  

  0.20. 0.15, 0, 0,0.05,0.1δ/R   1,2/3,1/3;n:1,0.5,0.1/LL  0.01(cm)R 000   

It is to note here that the present study corresponds to a Newtonian fluid case and to the 

flow in normal artery for parameter value 0,δ/Rand1n 0  respectively. 
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The impedance (resistance to flow),

 

λ  with the stenosis height,

 
0δ/R for any 

given value of the flow behavior index, n (Fig.2). The impedance,

 

λ  decreases with the 

stenosis length, L 
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for any given value of the flow behavior index, n and the stenosis height,

 
0δ/R  (Fig.3). 

We observe that for any given stenosis height,

 

,δ/R 0  the flow resistance, λ assumes the 

maximum magnitude in Newtonion fluid (n=1) analysis (Fig.4). 

The wall shear stress in the stenotic region, wτ  increases with the stenosis height,

 
0δ/R at any axial distance, z/L0 (Fig.5). At any axial distance, z/L0 in the stenotic region, 

the flow characteristic,

 
wτ  decreases with the flow behavior index, n for a given 

height, 0δ/R (Fig.6). The wall shear stress in the stenotic region,

 
wτ  increases steeply in 

the upstream of the stenosis throat located at z=d+L0/2 assumes its peak magnitude at 

the throat and then decreases 
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rapidly in the downstream of the throat and achieves the same value at the end of the 

constriction profile at z = d+L0 as its approached value at z = d. One notices that there 

exists almost a linear relationship between the blood flow characteristic, wτ  and the axial 

distance, z/L0 in the upstream of the stenosis throat, however, the relationship 

between wτ  and z/L0 is observed to be clearly a nonlinear for any given set of parameters 

(Fig.5 and 6). The shear stress at the stenosis throat, sτ

 

decreases with the flow behavior 

index n for any given stenosis height, 0δ/R (Fig.7). Numerical results reveal that the 

blood flow characteristic, sτ  increases with the stenosis size (height and length). The 

nature of variations of the shear stress at stenosis throat, sτ are similar to that of the 

impedance, 

 

λ  with respect to any parameter (Fig.2 and 7). 
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CONCLUSIONS 

 

A non-Newtonian (power-law) fluid has been used to discuss the response of a 

composite stenosis on the flow characteristics of blood. The flow resistance decreases 

with the non-Newtonian behavior of blood but increases with the stenosis size (height 

and length both). The wall shear stress at any axial distance in the stenotic region 

including at the setnosis throat possesses characteristics similar to that of the flow 

resistance with respect to any parameter. 
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