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Abstract 

Geometrical Optics is an important scientific area of training of the undergraduate 

science students. It is usually restricted in lenses and mirrors of relatively small lens 

aperture in which the various errors are considered to be negligible. Our intent in this 

publication is the experimental approach and study of the    spherical aberration of the  

non-ideal concave mirror with a large aperture, in which  the spherical aberration is 

not negligible. The focal length and the radius of curvature of the mirror are  also 

determined. The same experimental setup can be used to determine the focal length of 

ideal concave mirrors with negligible errors for an introductory level of geometrical 

optics. 

 

 

Introduction 

Mirror is every smooth and polished surface that reflects the light incident on it. 

Aspherical are called the mirrors whose reflective surface is a curved surface other 

than a sphere such as hyperbolic, elliptical and parabolic mirrors [1]. Spherical are 

called the mirrors whose reflective surface is a part of a sphere. Spherical mirrors are 

considerably easier and cheaper to fabricate than aspherical mirrors. Spherical mirrors 

are found in reflecting telescopes (Newtonian or Schmidt), in rear view mirrors and 

head lights of motor vehicles, in solar cookers and fishes’ eyes [2]. 

Aberrations are defects of mirrors and lenses in which rays of light parallel to but far 

from the optical axis (non-paraxial rays) are brought to a different focus from those 

close to the axis (paraxial rays). Spherical are called the aberrations when the incident 

light is monochromatic and they deteriorate the images making them unclear [3]. The 

spherical aberration of the eye and its correction has been attracting attention [4, 5]. 

In this article the spherical aberration of a concave mirror is investigated. The same 

experimental setup is used to determine the focal length and the radius of curvature of 

the mirror. 

 

Ideal spherical mirror 

The main characteristics of a spherical mirror (figure 1) are: 

 

The centre O of the reflective surface is “the pole of the spherical mirror”. 

a) The centre C of the sphere the mirror is a part of is “the centre of curvature of the 

mirror”. 

b) The radius CO of the sphere is “the radius of curvature of the mirror”. 

c) The straight line through C and O is “the optical (or principal) axis of the mirror”. 
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d) Every line passing through the centre of curvature of the mirror C and from a point 

D of the reflective surface of the mirror other than O is a “secondary axis of the 

mirror”. 

e) The angle ACB defined by the centre C of the spherical mirror and the end points A 

and B of the reflective surface is called the “aperture of the mirror”. When the 

mirror has small aperture, it is considered ideal. 

  

 

Ideal concave spherical mirror  

Ideal spherical mirrors [6] with reflective surface the inner surface of the spherical 

shell are called “ideal concave spherical mirrors”. 

Consider a light ray incident on the concave mirror parallel to the optical axis of the 

mirror (Figure 2).  

 

After reflection the ray will pass through point F on the optical axis of the mirror, F is 

“the focal point” or “focus” of the mirror.  

For an ideal mirror with small aperture we have approximately 

 
     2/RFOFC   

 

where COR   is the radius of curvature of the mirror. 

 

All light rays parallel to the optical axis of the mirror will pass through the focus F of 

the mirror after reflection (Figure 2). The distance between the focus F and the pole O 

of the mirror is called “the focal length of the mirror” FOf   (Figure 2) and we have 

already mentioned that 

                                                
2

R
f            (1)                                                 

Figure 1. Spherical mirror. CO is the 

optical axis, CD is the secondary axis. 

Figure 2.The focus F of an ideal concave mirror. 
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Light rays incident on the mirror parallel to a secondary axis of the mirror converge to 

a single point F΄ after reflection, “the secondary focus”. If we consider the mirror 

aperture small, all these secondary foci are located on a plane called “the focal plane” 

(Figure 3). 

 

Spherical aberration of a concave mirror 

The previous analysis of the spherical mirrors was based on the assumptions the 

mirror has small aperture therefore the incident rays are very close to its optical axis, 

this is the ideal mirror. 

If the aperture is big, rays parallel to the optical axis of the mirror do not converge at 

the same point, “the focal point” or “focus”, but they converge at the circumference of 

a circle (Figure 4). 

 

In this case the image of a point source is not a single point but a spot, this is the 

spherical aberration of a mirror [7]. Beams of rays 1R (paraxial) and 2R  (non-

paraxial) in Figure 4 have different distances from the optical axis and they converge 

to different points F and F΄΄ respectively on the circumference of a circle. 

Figure 3. 'FF is the focal plane, CD is the 

secondary axis. 

Figure 4. Convergence of paraxial 

rays R1 and non-paraxial rays R2 

incident on a concave mirror. 
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Consider ray AB parallel to the optical axis at a distance d from it (Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After reflection ray AB will intercept the optical axis at the point F΄ distant f΄ from the 

pole Ο of the mirror. The relation between 'f , the radius of curvature R and the 

distance d is 

 

                                                         
2)(12

1
1

'

R

dR

f



           (2) 

                                                     

Equation 2  can be proved referring to Figure 6. 'BF is the reflected ray of the non-

paraxial ray AB, 'F  is the point the reflected ray 'BF  intercepts the optical axis. The 

second law of reflection [8] gives 
βα   

 

 

 

and since AB and OC are parallel 

Figure 6. Construction to prove 2 for the 

spherical aberration of a concave mirror. 

Figure 5. Non-paraxial ray AB intercepts the optical 

axis of the mirror at F’ instead of the focus F. 
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   

 

Therefore the triangle BC'F   is isosceles and D'F  is both median and height, thus 

2

R
DC   

 

From the right-angle triangle DC'F   we obtain 

 

   



2sin12cos2

'       
'2

cos




RR

CF
CF

R
 

 

From the right-angle triangle CGB   

     
R

d
sin  

 

The last two equations combined with 

 
CFRfCFOCOF ''         ''          

 

When 0
R

d
then 

2

1'


R

f
, therefore   

                                                                         
2

'
R

f                                                  (3) 

 

and the mirror is ideal. 

 

Experimental setup 

The experimental setup for measuring the focal length of a concave mirror consists 

(Figure 7 and 8) of a base B on which are placed a) the concave mirror M we want to 

determine the focal length, b) the principal axis OO΄ of the mirror is engraved on the 

base B and it is graduated with a scale parallel to it, the beginning (the zero) of this 

scale coincides with the pole O of the mirror. c) The graduated scale 'KK  in the back 

of the mirror and parallel to it, the zero of this scale corresponds to the pole Ο of the 

mirror.  

 

 

 

 

 

d) The slider S (Figure 7) is able to move along the optical axis of the mirror. The 

path of the reflected ray can be drawn on the slider S; this is used for the alignment of 

Figure 7. Sketch of the experimental setup. Figure 8. Top view of the experimental 

setup. 
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the laser. e) A laser source L with beam 'RR parallel to the optical axis, is able to 

move in a direction perpendicular to the optical axis of the mirror. 

 

When the system is aligned the position M corresponding to the pole Ο of the mirror 

is indicated on the scale KK΄ (Figure 9).  

 

 

Position M corresponds to the distance d=0 of the beam from the optical axis of the 

mirror. Parallel translation of the laser source and its measurement are done with a 

sliding micrometer. The laser source is translated by distance d (Figure 9). M΄ is the 

point the extrapolated ray of incidence intercepts the scale KK΄. After reflection the 

ray will pass through point F΄ on the optical axis of the mirror. This point can be 

easily marked with the help of the slider S and the distance ΟF΄ can be measured with 

the graduated scale. Distance ΟF΄ is the distance 'f  of (2).  

Solving (2) for the radius of curvature of the mirror to a first order approximation one 

obtains 

                                              22

2

1
'' dffR                        (4) 

 

The focal length of the mirror f can be determined using (1). 

 

 

Results and conclusions 

The excellent agreement between the experimental data and the theoretical curve 

obtained from (2) is shown in figure 10.  

The range of (d/R) is limited as seen by the experimental data in figure 10. This is due 

to the short range the micrometer is able to slide perpendicularly to the optical axis; 

work is under way to improve this. 

The experimental setup provides a reliable and accurate enough method to determine 

the spherical aberration as well as the focal length and the radius of curvature of a 

non-ideal concave mirror with a large aperture. Also it indicates the identity between 

theoretical and experimental anticipation, proving the existing theory. It also measures 

the degree in which a concave mirror is closer to the ideal. 

We observe when the fraction d/R increases the divergence between theoretical and 

experimental rates, it increases, also. The experimental setup, that we are using, it 

Figure 9. The scale KK’ next to the 

concave mirror. 
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limits the measurements of the bigger rates of the fraction d/R, something that we are 

going to solve with the construction of an appropriate experimental setup. Which it 

will enable to measure at the borders of the concave mirror, a paper that will be 

presented later.  

 

 
 

Figure 10. Plot of (f’/R) against (d/R) for a concave mirror. The solid line is the 

theoretical curve from (2), the discrete points are the experimental measurements. 

 

The same experimental setup can be used to determine the focal length of ideal 

concave mirrors with negligible errors for an introductory level of geometrical optics. 

Determination of the same quantities of other curved mirrors and lenses with 

appropriate adjustments of the apparatus could also be investigated. 
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