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Abstract- The present work deals with the flow of blood through a bell shaped stenosis 

assuming that the flowing flood is represented by a macroscopic two-phase model (i.e., a 

suspension of erythrocytes in plasma). The coupled differential equations describing the 

flow of fluid (plasma) and the particle (red cell) phases have been solved and the 

expressions for the flow characteristics, namely, the impedance, the wall shear stress in 

the stenotic region, the shear stress at the stenosis throat have been derived. Results 

obtained in the paper have been discussed graphically in brief. 

 

Key Words: Hematorit, impedance, shear stress, stenosis throat, stenosis . 
 

 

INTRODUCTION 

 

The narrowing of any body passage, tube or orifice in a living mammal is known 

as stenosis or arteriosclerosis, an abnormal and unnatural growth that develops at 

various locations of the cardiovascular systems under diseased conditions and 

occasionally results in to serious consequences (cerebral strokes, myocardial infarction, 

angina pectoris, cardiac arrests, etc.). Probably the deposits of the cholesterol, fatty 

substances, cellular waste products, calcium and fibrin in the inner lining of the of an 

artery, etc. are responsible for the frequently occurring disease. Irrespective of the cause, 

it is well known that once the constriction has developed, it brings about the significant 

changes in the flow field. The knowledge that the hemodynamic factors play an 

important role in the genesis and proliferation of the disease has attracted the 

investigators including Mann et al. (1938), Young (1968, 1979), Young and Tsai (1973), 

Caro et al. (1978), Shukla et al. (1980), Ahmed and Giddens (1983), Sarkar and 

Jayaraman (1998), Pralhad and Schultz (2004), Jung et al. (2004), Liu et al. (2004), 

Srivastava and coworkers (1996, 2009, 2010), Mishra et al. (2006), Misra and Verma 

(2007), Ponalagusamy (2007), Layek et al. (2005, 2009), Joshi et al. (2009), Mekheimer 

and El-Kot (2008), Tzirtzilakis (2008), Mandal and coworkers (2005, 2007a,b), Politis et 

al. (2007, 2008), Singh et al. (2010), Srivastava et al. (2011), Mishra et al. (2011) and 

many others.  

At low shear rates being a suspension of corpuscles, blood behaves like a non-

Newtonian fluid. However, the theoretical study of Haynes (1960) and experimental 

observations of Cokelet (1972) indicate that blood can not be treated as a single-phase 

homogeneous viscous fluid in narrow arteries (of diameter m).1000 Srivastava and 

Srivastava (1983) presented a brief review of the modeling of blood flow and observed 

that the individuality of red cells (of diameter m8 ) is important even in such large 

vessels with diameter up to 100 cells diameter. A brief survey of the literature on 

multiphase blood flow has recently been presented by Srivastava (2007). A survey of the 

literature on arteriosclerotic development further reveals that the studies conducted are 

mainly concerned with the single symmetric and non-symmetric stenoses. An attempt is 
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made in the present investigation to explore the effects of a bell shaped stenosis on the 

flow characteristics of blood taking into account that the flowing blood is to be treated as 

macroscopic two-phase fluid (i.e., a suspension of erythrocytes in plasma).  

 

FORMULATION OF THE PROBLΕM 

 

Consider the axisymmetric flow of blood through a bell shaped stenosis, 

specified at the position shown in Fig.1, in an artery with permeable wall.  The geometry 

of the stenosis which is assumed to be manifested in the arterial wall segment is 

described as 

               
                       Fig.1 The geometry of a bell shaped stenosis with permeable wall.   
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where R0 is the radius of the arterial segment in the non-stenotic region, R(z) is the 

radius of the stenosed portion of the arterial segment located at the axial distance z from 

the left end of the segment, δ  is the depth of stenosis at the throat into the lumen and m 

is a parametric constant, ε  the relative length of the constriction, defined as the ratio of 

the radius to the half  length of the stenosis, 00/LRε i.e.,  . 

 

Blood is assumed to be represented by a macroscopic two-phase model, that is, a 

suspension of erythrocytes (red cells) in plasma. The equations describing the steady 

flow of a two-phase macroscopic model of blood may be expressed (Srivastava and 

Srivastava, 1983, 1989) as   
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with 2 = 222 z/r)/((1/r)r/   as Laplacian operator, r is the radial coordinate 

measured perpendicular to the axis of the tube. ( ff v,u ) and (
pp v,u ) are the (axial, 

radial) components of the fluid particle velocities, respectively, 
pf ρandρ are the actual 

density of the material constituting the fluid (plasma) and the particle (erythrocyte) 

phases, respectively, (1-C ) fρ  is the fluid phase and C pρ  is particle phase densities, C 

denotes the volume fraction density of the particles, p is the pressure, 
sμ (C) ~ 

sμ is the 

mixture viscosity (apparent or effective viscosity) , S is the drag coefficient of 

interaction for the force exerted by one phase on the other, and the subscripts f and p 

denote the quantities associated with the plasma (fluid) and erythrocyte (particle) phases, 

respectively. Others limitations of the present model are the same as discussed in 

Srivastava and Srivastava (2009). The expressions for drag coefficient of interaction, S 

and the viscosity of the suspension, 
sμ  for the present study are selected  (Srivastava 

and Srivastava, 2009) as 
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where T is the measure in absolute scale of temperature (K) , 
0μ  is the constant plasma 

viscosity and  0a
 
is the radius of an erythrocyte. 

 

It seems to be a formidable task to obtain the solution of equations (2)-(7). 

Depending however, on the size of the stenosis, certain terms in theses equations are of 

less significance than others. Now following the reports of Young (1968), Srivastava 

Srivastava (2009), the equations governing the laminar, steady, one-dimensional flow of 

blood in an artery in the case of a mild stenosis (i.e., 1)δ/R 0   are derived from 

equations (2)-(7) as  
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The boundary conditions are 
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ANALYSIS 
 

An integration of equations (10) and (11), subject to the boundary conditions 

(12) and (13), yields the expressions for the velocity of fluid and particle phases as  
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The flow flux, Q is now calculated as     
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where  
2

0s /SRC)μ8C(1β  , a non –dimensional suspension parameter. 

 

The pressure drop, L)zatp,-Lzatp(Δp  across the stenosis in a tube of 

length 2L is calculated from equation (16) as  
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  The first and the third integrals in the expression for ψ  obtained above are 

straight forward whereas the analytical evaluation of the second integral is almost a 

formidable task and thus will be evaluated numerically. Following now the reports of 

Young (1968) and Srivastava and Rastogi (2009), one obtains the expressions for 

impedance, λ , the wall shear stress in the stenotic region,
w , the shear stress at stenosis 

throats,
 sτ  in their non-dimensional form as 
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0λ  and 0τ  
are respectively the flow resistance and wall shear stress for a normal artery 

(no stenosis) in the absence of the  particle phase (i.e. C=0, Newtonian fluid). 

 

  In the absence of the particles (i.e. C=0) the results for a Newtonian fluid are 

derived from equation (19)-(21), as  
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where the subscript N stands for the Newtonian fluid. 
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NUMERICAL RESULTS AND DISCUSSIONS 

 

In order to discuss the results of the study quantitatively, computer codes are 

developed to evaluate analytical results obtained in equations (19)-(21) at the 

temperature of 37
0 

C in an artery of radius 0.01cm for various parameter values selected 

from Young (1968), Srivastava and Srivastava (2009) and Srivastava and Rastogi 

(2009). The parameter values are: L0 (cm ) = 1; L(cm) = 1, 2, 5 ; C = 0, 0.2, 0.4, 0.6; 

0δ/R =0, 0.05, 0.10, 0.15, 0.20. 
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 The resistance to flow, λ  increases with the hematocrit, C as well as with the 

stenosis height, 0δ/R (Fig.2). The impedance, λ  decreases with the increasing length of 

the tube which in terns implies that the impedance, λ  increases with the stenosis length, 

L0 (Fig.3). The blood flow characteristic, λ increases steeply with the hematorcit, C for 

any given set of other parameters (Fig.4). 
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 At any axial distance the wall shear stress in the stenotic region, w  

increases with the hematocrit, C and stenosis height, 
0δ/R (Figs. 5& 6). The blood flow 

characterstic, w  increases  
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rapidly in the up stream of the stenosis throat and attains its peak magnitude at the throat 

located at 
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z/L0 =0, it then decreases rapidly in the down stream of the throat and achieves its 

approached value (i.e., at z/L0 = -1) at the end point of the constriction profile located at 

z/L0 =1 (Fig. 6). The shear stress at the stenosis throat, sτ  
also increases with the 

hematocrit, C and the stenosis height, 
0δ/R  (Fig. 7). An inspection of Figs. 2-4, 7 and 8 

reveals that the shear stress at the stenosis throat,
 sτ  

possesses the characterstics similar 

to that of the flow resistance, λ with respect to any parameter. 
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