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Abstract: It is very interesting and difficult to understand the papers of the great
mathematician Prof. Harish-Chandra (1923-1983). While reading any one of them the
reader is compelled to know the answers of many questions standing on the way. We
have tried to understand his paper* and found that the Jacobi polynomial appears on the
way of solution of wave equation of electron moving in the field of a magnetic pole.
This Jacobi polynomial is not in the usual form appearing in mathematical literature. In
this paper we have compared the Jacobi polynomial used by Harish-Chandra with its
usual form. We have also deduced the explicit form for such polynomials from identity
given in his paper’ . We have also verified the results found by him concerning Jacobi
polynomials.
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1. INTRODUCTION

In his paper' Prof. Harish-Chandra obtained the suitable Hamiltonian H for
the motion of electron in the field of a magnetic pole and reduced the problem to find the
wave function y satisfying the wave equation
(1.1) Hy =Ey,
where E is some eigenvalue of H . The spherical polar coordinate system is suitable for

the problem and therefore using the transformation laws of tensor analysis he converted
(1.1) to the following form

1 o 1) o 0 . n
1.2 - —+= |+ —=-—"13M +—(1-cosd
(1.2) Lpl{aa(ar r} r (849 sin@{ 2( )

—%COSH})}+p3y+ E]:lt//o =0.

il M-=03 4 A A A
Where he has writteny = e[ 2 j ¥, , to make the equation free from ¢,i.e. v, is
a function of r, 6 only and g is mass of electron and M is half an odd integer. The
two independent sets of Pauli operators®c s and p s satisfy the relations

1.
—Zic
¢ 5102

(1.3)

0,0, +0.0, =20, , p,p; + p.p, = 20; o
{. §+010, =20, pp;+ pip; =20, (i=123),

TP = Pi0i» 010,05 =1, pp,p;3 =1

and commute with all other operators involved in the equation (1.2).
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As in paper' Harish-Chandra assumed that

2 _ 0 0, C0s 6 ’
(1.4) -K { {ae SInQ(NH_Z(l cos®)— 5 H}

because the operator within the curly bracket is purely imaginary. This operator
commutes with the operator acting on y, in (1.2). This fact can be verified in the

1,01

following way. Being the multiple of the operator in the curly bracket in (1.4) by

0
o0 sm@

—K?. Further —K? clearly commutes with p,z+E, since p, commutes with o, and

the operator }pl {01( {M t (1 cosd) —7cos 6’})} commutes with

o, . By bringing o, to the left of first term of the square we may write —K? as

{aae ; sme[MJrz(l COS@))H@% ; smg(M_'_z(l COS@)]},thi

s makes easier to understood that it commutes with ]{pl [03 (aﬁ + ED . Thus we find
i rr

that —K* commutes with the operator of (1.2). Hence —K? equal to the square of

operator
o, 2% (M4 (1-cosg)- BB |
00 sme 2 2

Since if two operators commute their eigenvectors are same though their eigenvalues
may be different. Hence we can choose , to be an eigenvector of —K?.

2. REDUCTION OF THE OPERATOR —K? TO THE JACOBI OPERATOR

From equation (1.4)

e ot on 2]
{G{aae : sme(mz(l COS@)H }X
{7+ 3et0- g+ 3-ne)
:{01{680 : sme(““z(1 Cosg)ﬂ}
{680 2 sme(mz(l Cow)}
_{680 ; sme[“’”z(l COSQ))}
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1
sme

sind-2 + Looso - 03(M+ (1- cose))
00 2 2

. o 1 1 o0 cotd
Since ———M=——— —— we get
o6sin@ sin@ o6 sind

(2.1) —KZ-L i—lcot¢§?+a3(M+ (1- cos&)j
sin@ |06 2 2

sin0-> + Looso - 03(M+ (1- cos@)}
00 2 2

Now for finding eigenvectors of —K2, he puts u=cos@, sinéd=+1-u?

0 _oud \/—8

00 o0ou

.". First factor of R.H.S. of equation (2.1)

:_L i—lcot9+0'3(|v|+ (1- cose)j
sing |00 2 2

Also second factor of R.H.S. of equation (2.1)
0o 1
sin@—+=cos@—o,| M +— (1 cos6)
00 2 2

:{Jl_u ( itu —j+;u GS(M+2(1 u)j}
ool (3

Now equation (2.1) becomes

1 d n n 1
—K?= R {(1_UZ)E_63(M +§j+(503 +Eju} X
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+03(M +EJ(203 +lju+(203 +1ju(l—u2)i
2 )\ 2 2 2 2 du

2
n 1 n n 1 )
+O'3(§O'3 +EJ(M +Eju—(50'3 +§) u }

R P S
=y
.

(22) —K’= (1-u?) o —2u i u]

2
(o o
d? d 2) (2 2 (n a3j n* -1
—l=+=1 +
where u =cos@. This is the required form of operator —K?.

3. EIGENVALUES AND EIGENFUNCTIONS OF OPERATOR -K?

2 2
and say that if m, j are both integral or both half-integral the only eigenfunctions of the
operator

2 i 2
(3.1) (1-u?) ;7 —2u ;—u _—{Z—IJJL% _i?,

- - - - k
corresponding to the interval —1<u<1 are the Jacobi polynomials P/ . (u) and

In paper* Prof. Harish-Chandra put m = (M + gj j= (E +ﬁj

corresponding eigenvalues are—k (k +1), where k is to be so chosen thatk > |m|, | j| and
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k —j is an integer. Prof. Harish-Chandra defined Pn'j,j (cos@) by nice and beautiful
identity, which is one of the achievements of paper” is given as

0 .0’ 0 AN
CoS— +t, sIn— —t sIn—+1t, cos—
(tl 2 ? 2) ( 1T 2 2)

(k= D)k + )y

(3.2)

—k k-mg k+m
= hoh Py, (cos).

mk {(k —m)l(k +m)1}?

Thus from (3.1) we get

(3.3) {(1u2):72u;—u% jz}Pnf,,-(u)=k(k +1)Rn; ()

. d? d {m-ju® ., n-1
l.e. {(1_UZ)W_ZUE_W_JZ+T P,#,j(u)

_ {—k(k +1)+ ”24_1} P (u)

ie. —K? Pmk'j(u):—{(kJrn;rlj(k—nglj}Pr:,j(u).

So eigenfunctions of the operator —K? in the interval —1<u<1 are the Jacobi

. . . n+1 n-1
polynomials Pka (u) and the corresponding eigenvalues are —{(k + > j(k - j}

2
2 ok _ n+1)/, n-1 K
Also K Pmyj(u)—{(k+ > j(k > j}Pm,j(u)

ie. {KZ—[k+n+1j(k—n_lj}Pn'fj(u):O,
2 2 )™

since Py, (u) is eigenvector, so

etz -
60 i Gy Gy
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4. EXPLICIT FORM OF Pn'flj(u) EVALUATED FROM HARISH-CHANDRA
IDENTITY

Harish-Chandra Identity (3.2) is a generating relation for Jacobi
polynomial Pn'j’j(u). In paper' Prof. Harish-Chandra has not given the explicit form

of Pmk'j(u). In this article we are giving such form of Pnfyj(u) from Harish-Chandra
Identity. Now from Identity (3.2) which can be written as

k—j k+j
(tz sinlert1 coszj (tz cosz—tlsinzj
(4.1)

1

{(k= i)k 0)y?

6 AN
(tz sin—+t; cosz)

VR
—+
N
(@)
o
w
MRS
|
ot
«\,
>
N
N—
T

L.H.S. of (4.1) =

K+ (k+j 0 k+j-s _ 95
t hd — el
so[sj(“mJ (“S'”zl}
e
- - tl’+St 7F+SX
(b= ipges gy 15 LT

r+k+j-s kK—j-r+s
[cosgj (sin gj (-1) }

put r+s=k—m and cos%:(“czo‘c'e} ’Singz(l—cosej .

2

1 K o K (ke Kt k-m-r g K
L.H.S. of (4.1) = ; 2 ( j(k )(—1) o ghom
)Y’ r

(k= i)k + )

(j+m) (j+m)
(1+cosd)” 5 (1-cos 49)'“7 5 }
X
r k—m-r
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Kemer (J+m) (j+m)
(-1)"" " (1+cosd) "z (1-cos 0) 2 b,
Compare L.H.S. and R.H.S. of equation (4.1) we get

Pt (cos0) =2+ S ko m)Hkem)y (rjj(k:irj(—l)k‘m‘fx

=0 {(k=j)(k+j)Y
(j+m) j+m)

(
(1+coso)” 2 (1—cos€)k+ 2,

[

N =

N

Hence we get

1
2

(4.2) Zkkj{ B I(k+m)}

=0 {(k—j)i(k+j)Y

N

which is an explicit form of Py (u).

5. JACOBI POLYNOMIAL IN ZEMANIAN?

From Zemanian® chapter IX we know that the normalized eigenfunctions of the operator
-1/2 2 -12
(5.1) n=[w(x)] " D(x* -1)w(x)D[w(x)]| ",

where w(x)= (1-x)“(1+x)” and e, f are real numbers with &>-1, 4 >-1 and
—1<x<1 are given as

1/2
(5.2) v, (x){M} P (x), N=123,...

220 (n+a+1)T(n+p+1)

where = ,
nl(2n+a+p+)I(n+a+ f+1)

and the P“*)(x) are the Jacobi polynomials defined as

(5.3) =2 Z( )(Mﬁ] x—1)"" (x+1)",

these eigenfunctions y, (x) correspond to the eigenvalues 4, =n(n+a + B +1).
Thus we have

My, (X)=4, v, (x)
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i.e. {[W(X)]‘J/Z D(xz _1)W(x) D[W(X)Tﬂ}z//n (x)={n(n+a+B+1)}y,(X)
e (=0 T D¢ -1a-x)" (@2 D)

1+x) "y, (x)}} ={n(n+a+B+1)}y,(X)

e, —(1—x) (X" D{%(a— B axs Pr)(L-x)" (14 %) v, (x)

(1- x)%+l (1+ x)g+1 v (x)}:{n(n +a+B+1)jy, (x)

ie. —{(l—xz)l//n”(X)—2X1//n'(x)+(ﬂ;_ajwn(x)

=—{n(n+a+p+)}y,(x).

So w,(x) are the eigenvectors and —{n(n+a+B+1)} are eigenvalues of the
differential operator

(o) 8y 8 {(ﬂzaj‘(ﬂgajx}z+(ﬂ+a)

dx? dx (1_ xz) 2

6. COMPARISON OF TWO JACOBI POLYNOMIALS USED IN PAPER! AND
ZEMANIAN®

According to Zemanian® from equation (5.4) put

B-a) f+a _
(6.1) (—2 ]_m,(—z ] j, weget

{(1—x2)%_2x%_ {Z:)J:Z(}) + J}l/ln (x)= -n(n+2j+1)y, (x)
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d? d {m-jx)’

{(l—xz)W—ZX&—(l_—xz)— jz}l//n (x)

= -n(n+2j+1)y, (x) =(j+J*)w, (%)
(6.2) {(lx2)£2xiM '2}1//n(x):(n+j)(n+j+1)l//n(x).
Comparing equation (3.3) and (6.2), with using (4.2), (5.2) and (6.1) we get

Kk _(_ j-m 2 % vy —
63) Py (u)=(-1) (—2k+1j v, (X),u=x=cosb,

(6.4) v, (X)= (—1)]_m (2k2+1J2 Py, (u),x=u=cosé, .

a=j-mpB=j+mn=Kk—j
Where w, (x) be the normalized Jacobi polynomial®.

7. CONCLUSION

We have come to the conclusion that the Jacobi polynomial® Pmk‘ ; () is infact the

2

2k +1
us to take k and j either both integers or both half of odd integers.

value of (—1)“"( jzz//n(u) forn=k—-j, a=j—m and f = j+m. This allows
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