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Abstract 

The main differentiating point between the meshfree and finite element methods is 

the shape function. The paper is intended to elaborate the construction of the moving 

least square approximation shape function and their derivatives in one-dimension, by 

presenting the related plots of shape function and its derivatives; with different 

parameters. A tapered bar subjected to tensile load using the element free galerkin 

method, applying the moving least square approximation shape function, has been 

modeled and tip displacement with exact and meshfree solution has been found to be in 

good agreement.  
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1. Introduction 

The development of the approximate methods for the numerical solution of 

practical problems, re-presentable by partial differential equations has helped engineers, 

physicists and mathematicians in analyzing the complex phenomena at reduced costs. 

The finite element method (FEM) is one of the most popular, well-developed and 

possessing much versatility in analyzing complicated phenomena, whose behavior is 

governed by increasingly complex partial differential equations. 

 

In recent years, meshfree methods have been developed as an alternative 

numerical tool in effort to eliminate known drawbacks of the finite element methods. 

The nature of the various approximation functions used by meshfree methods allows the 

representation of the problem domains by simply adding or deleting nodes where-ever 

desired. The prior knowledge of nodal connectivity to form a discrete element as in 

finite element methods is not necessary, only nodal coordinates and their domain of 

influence are sufficient to represent the problem domain. 

 

There are several meshfree methods under current development, including the 

most versatile element free Galerkin (EFG) method proposed by Belytschko et al. [1], 

Meshless Local Petrov-Galerkin (MLPG) method proposed by Atluri et al. [1, 2] and 

many other methods. These well-established EFG and MLPG method use the shape 

functions which are derived from moving least-square approximation. The main purpose 

of this paper is to elaborate the construction of meshfree shape function using the MLS 

approximation. 

2. Meshfree shape function 

The meshfree shape function is the central and most important issue and main 

differentiating point for the meshfree methods from the finite element methods. There 
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are a number of ways proposed to construct the meshfree shape functions [3]. In this 

paper the finite series representation, moving least square approximation method is 

studied and elaborated considering the programming and implementation aspects, the 

different plots have been included to indicate the different steps and effects of various 

parameters exclusively.  

A good meshfree shape functions needs to satisfy the following conditions as for 

as efficiently possible: 

1) A compulsory condition for the shape function is the satisfaction of partition of 

unity.      
1

( ) 1
n

i

i

x


      (1) 

2) It should be able to manage the reasonable randomness of distribution of nodes. 

3) The algorithm should be numerically stable. 

4) The shape function constructed should have the consistency to enable the 

convergence of numerical results with increase of nodes. 

5) The domain of influence should be compact. 

6) The Kronecker-delta property should be satisfied. 

7) The computational efficiency should be at par with FEM. 

8)  Ideally, the field approximation should be compatible throughout the problem 

domain.  

3. Meshfree shape function construction 

Moving least square (MLS) was originated by mathematicians for data fitting and 

surface construction, the procedure for constructing the meshfree shape function using 

the MLS approximation starts with the assumption that x1, x2, x3, x4, and xn are the nodes 

distributed in the domain Ω and the associated field variable or nodal parameter with 

these node are u1, u2, u3, u4, and un. The different sampling points are represented by x 

which is the locations of different points and xI represents the nodal points distributed in 

the domain of the problem Ω and the number of these sampling points will dictate the 

smoothness of the curve plotted for the weight and shape functions. 

In meshfree methods approximation of the field variable function u(x) without any 

connectivity information between the nodes is done by considering the approximation as 

the product of a vector of polynomial basis function and a set of unknown coefficients 

varying with x. This can be also put as the approximation of the function u(x) is obtained 

by assuming the approximate solution as a polynomial function represented as: 

2

0 1 2( ) ( ) ( ) ( )appxu x a x a x x a x x  
  

  (2) 

 For linear basis in 1D 

2

0 1 2( ) ( ) ( ) ( )appxu x a x a x x a x x       (3) 

 

For quadratic basis in 1D 

Considering the linear polynomial function in one-dimension, equation (2), can be 

written in matrix form: 
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Where    ( ) 1Tp x x     (6) 

and 

 0 1( ) ( ) ( )Ta x a x a x     (7) 

 

 The value of approximate solution or approximation u(x)appx can be evaluated by 

determining the unknown coefficients of x. The unknown coefficients are evaluated by 

minimizing the difference between the local approximation at that point or the 

considered node in the support domain and the nodal parameter for the node I, i.e.  

( )I Iu u x      (8)

  

The approximated value of field variable at the local nodes is given by: 

( , ) ( ) ( )T

I appx Iu x x p x a x
    

(9) 

Again it is emphasized that a(x) is arbitrary function of the sampling point’s x and 

xI represents the nodal points. The minimization process starts with the construction of a 

weight residual functional with respect to unknown coefficients, considering the 

equation (4) and (5), and given by: 

    2

1

( , )
n

I I Iappx
I

J w x x u x x u


       (10) 

The minimization of this functional J produces a set of linear equations [1, 3 and 

4]: 

    ( )x x xA a B u      (11) 

x x x(-1)
a( ) = A ( )B( )u      (12) 

Where A(x) is known as weight moment matrix and given by: 

       
1

T

I I

I

n

Ix w x x p x p x


 A     (13) 

             1 1 2 2

1 2

11 1
1 1 1n n

n

x w x x x w x x x w x x x
xx x

    
          

     
A

 

(14) 
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And                1 2 nx B x B x B x   B      (15)
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The nodal parameters of the field variables are represented by the vector u:  

 
 

T

1 2 nu u uu      (17)

  

The new variable introduced in the equation (13) is known as the weight function. 

The weight function considered in this study is cubic spline given by: 

 

2 3

2 3

1

2 1
4 4  

3 2

4
4 4 4  0.5 1

3

0      

            

    

                         1

r r if r

w x x r r r f r

if r

i


  




      






   (18)

  

Another weight function known as Quartic spline, is also used to present the effect 

of weight function on the shape function, is given as: 

 
2 3 4

1

1 6 8 3   1

0                              

   

 1

r r r if r
w x x

if r

    
  


   (19)

  

Where r = |x-xI|/dI and ,dI is the radius of influence domain or radius of support 

domain of the node. 

Substitution of equation (12) into the approximate solution equation (5), leads to: 

( 1)

( 0) ( 1)

( ) ( ) ( ) ( )
m n

appx j I

j I

u x p x A x B x u
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T
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   1 2( ) ( ) ( )nx x x x   Φ     (22) 

The MLS shape function for i
th

 node is defined by: 

 

( 1)( ) ( )( ( ) ( ))T

I Ix p x A x B x       (23)
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The MLS shape function for the middle node i.e. I= 3 is expanded to clear the 

programming aspects and distinguishing between the nodes and sampling points. The 

domain Ω= (0, 1) is represented by five nodes located at points (0  0.25  0.5  0.75  1.0). 

3 (x), indicates the shape function associated with the support node three, it is a vector 

having the values corresponding to the number of support nodes in the support or 

influence domain of  middle node located at x = 0.5 and is given by: 

     1

3 3 3

3

1
1 x x ( )x w x x

x
   

   
 

A    (24) 

The influence domain is considered to be equal to dI  = 0.4375, this is the radius of 

circle; in the area of this circle all the nodes are influencing or contributing to the 

approximation. The number of nodes in the influence domain of the middle node is three 

and their location are at x = 0.25, x = 0.5 & x = 0.75.  The shape function associated 

with this middle or star node at x = 0.5, is elaborated to bring out the clarity. The 

evaluation of weight moment matrix-A; associated with middle node:     

     3

1
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The calculations for the shape function are: 

     1

3
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(28) 
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       1
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0.5
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After performing the calculation we receive the value of shape function 

corresponding to 3  (0.25) = 0.1197, 3  (0.50) = 0.7605 & 3  (0.75) = 0.1197. This can be 

better assimilated by figure-1, representing the shape function, using the linear basis 

function, cubic spline weight function and the radius of dimension of support domain, dI 

= 0.4375 with two different number of sampling points (SP). 
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3.1. Shape function derivative 

The derivatives of shape function can be calculated by applying the product rule to 

equation (23): 

( 1)( ) ( )( ( ) ( ))T

I Ix p x A x B x 
    (31)

  

The first derivative is obtained as 
( 1)

, ( ( )( ( ) ( )) ),T

I x Ip x A x B x x     (32)

  
( 1) ( 1) ( 1)

, ,  , ,( ) ( )  ( ) ( )T T T

I x x I x I I xp A x B x p A B x p A B x       (33) 

 

The further expansion for the equation is similar to as described for the shape function. 

 

 

Fig.1. Shape function for middle node 

3.2. Nan Error 

The critical and erroneous situation occurs whenever the derivative of shape function is 

to be evaluated at the node which is also a sampling point or point of interest. The 

derivative of weighting function and shape function cease to exist, this condition if 

occurs during the meshfree program execution the results will not be logical and 

accurate. Figure-2 presents the plot of shape function derivatives, in this case the NaN 

error has been solved by shifting each node by a distance of 0.0001 from the locations of 

uniform distribution, within the boundary of domain. The next combined figure-3 

presents the plots of weight function, shape function and their derivatives with (above) 

and without (below) implementing the node shifting. The derivatives of the weighting 

function are discontinuous and the shape function derivatives cease to exist.  
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Fig.2. Shape function and derivative for middle node 

4. Matlab program implementation 

The programming flow chart for the moving least square shape function and 

derivatives, given by equation (23 and 33), is presented in figure-4. The program steps 

are elaborated, here under:  

1) Enter the domain of the problem and represent the geometry into nodal and 

sampling points. 

2) Initialize the support domain of influence, matrices for the weight function and 

shape function 

3) Initialize the first “for” loop for number of nodes as the shape function needs to 

be calculated at each node, within this “for” loop other loops are initialized to: 

a. Find the values of weight function and derivatives at the nodal points. 

 

Fig.3. Influence of node shifting 

b. Find the values of weight function and derivatives at the sampling 

points. 

c. Find A-matrices and their inverse at nodes. 
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d. Find B-matrices and derivatives at sampling points. 

e. Find the value of shape function and derivatives at the nodal and 

sampling points. 

f. End of first “for” loop. 

 

4) Plot the nodal points 

5) Plot weight function and derivatives 

6) Plot the shape function and derivatives using nodal points and sampling points 

7) Add legend, x and y label to the plots 

 
Fig.4. Flow chart for shape function calculation 

5. Results and discussion 

The various findings related to the properties and effects of various factors on the 

behavior of the shape function are included along with the plots obtained using the 

matlab program. 

5.1. Partition of unity 

The figure-5 presents the shape function for the 9 nodes and the values of the 

shape function for the middle node, corresponding to other node locations, marked by 

circles; are presented in the Table-1, to show that the shape function approximates and 

satisfies partition of unity conditions subject to use of constant terms. 
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Fig.5. Shape function to confirm partition of unity 

 

Table-1 Partition of unity 

 

Node 1 2 3 4 5 6 7 8 9 Total 

 (5) 0 0.0022 0.0599 0.2475 0.3807 0.2475 0.0599 0.0022 0 0.9999 

5.2. Lack of Kronecker delta 

The table-1 presents the values of shape function associated with node number 

five x = 0.5, the value of shape function at this node is  (5)(x) = 0.3807 ≠ 1.0.  Thus the 

moving least square shape functions do not satisfy the Kronecker delta condition. 

5.3. Compact Support 

 The shape function provides the compact support and the value is zero outside 

the support domain of influence of the concerned node. 

5.4. Continuity 

The shape functions have high order of continuity, although only linear basis has 

been used, because of the fact that shape functions inherit the continuity of the weighting 

function. The weighting function used is cubic spline. Figure-6 indicates the effect of the 

weighting functions, as the two weighting functions have different shapes and order of 

continuities the shape function inherits these features of the weighting functions. 
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Fig.6. Shape function with cubic and quartic spline using linear basis 

5.5. Weighting function 

The selection of the weighting function plays a very vital role in the formulation 

and solution of meshfree methods. The shape functions generated with cubic spline and 

quartic spline are represented in figure-6. The conclusion from this can be made that the 

cubic spline weighting function gives the shape function which posses more local 

character.   

5.6. Bell shape 

The shape functions possess the bell shape, presented in figure-1 through 6, as the 

number of nodes in the support domain is increased the height of the bell gets lowered 

and spread gets lengthened increasing the global influence. 

5.7. Reduction of peaks 

The peak values of the shape functions fall down as the number of the nodes in the 

support domain is increased as a result the smoothness increases and the local character 

starts decreasing and the behavior tends to be global. Comparing figure-1 & 5 give a 

better visualization; note the values on the y-axis. 

5.8. Sampling points 

The difference between the nodal points and sampling points is very vital and 

made very clear and unambiguous by figure-7, representing the plots for the first and  

the second nodes, as the number of sampling points is increased the smoothness of the 

curve is increased without affecting the peak values of the shape function corresponding 

to the nodes.  

 

Fig.7. Shape function for the first and second node 

 

5.9. Mirror Image 

The shape functions are the mirror image of each other from the central node, 

presented in figure-8(a). These approach or/and reach unit values near the boundaries of 
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the domain so that the imposition of the boundary condition is simplified. The approach 

to unit value is reasonably gradual and emphasized by drawing a horizontal line in 

figure-8(b). 

     

(a) Sampling points-51                         (b)   Sampling points-21 

Fig.8. Shape function for 9 nodes (dI  = 0.4375) Linear basis, Cubic spline 

5.10. Influence of support domain 

The effect of influence of support domain is represented by figure-9, it can be 

concluded that with the increase of support domain the local behavior of the shape 

function diminishes and as the nodes in the support domain are decreased the shape 

function value approaches to unity. In this condition the shape function will interpolate 

through the nodal values, if the A-matrix is invertible, however if the number of node in 

the support domain becomes less than the number of monomials in the basis function, 

inverse of A-matrix will not exist. 

 

 
Fig.9. Influence of support domain, dI 

5.11. Basis function 

The effect of the basis function on the shape function is presented by figure-10. 

Moving least square shape functions using linear, quadratic and cubic basis function and 

cubic spline weighting function are computed and plotted to visualize the effect of basis 

function on the shape functions.  The study concludes that as the order of basis function 
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is increased, the value of  (5)(x) increases to maximum and becomes constant as the 

order of basis and weighting function become equal. 

 

 
Fig.10. Shape function with different basis functions 

5.12. Basis function 

 The effect on the geometry of the shape function is presented in the figure-11, 

the quadratic basis function with quartic spline weight function ;  11 & 25 nodes have 

been used to represent the domain of Ω = (0-1) to get the plots for the first and middle 

node. The number of sampling points is 51, to get the smooth curves.  The shape 

function loses its local character and adds to the global nature so that the convergence of 

the solution is achieved with the increase of number of nodes in the domain.   

  

 
Fig.11. Shape function with coarse and fine nodal distribution 

 

5.12. Validation 

The matlab program for the shape function is validated by solving the problem 

from the elastostatics. The problem of tapered bar has been considered, which posses a 

mix of complexity and easier exact solution, from [5, 6].  A tapered bar of uniformly 

varying cross sectional area, A1 = 1 m
2
, A2 = 0.5 m

2
 on each end, subjected to tensile 

point load, P = 1000 kN, and young’s modulus, E = 200 GPa; was modeled and solved 

using the element free galerkin method and the results are positive and in good 
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agreement to the exact solution, validating that the developed of formulation and matlab 

program. The figure-12 represents the comparative plots obtained by exact solution and 

the element free galerkin method with the variation of support domain of influence. The 

increase in the number of nodes will bring the convergence of the meshfree solution to 

the exact solution. 

 
Fig.12. Comparison of EFG and exact solution 

6. Conclusion 

The moving least square shape function and its derivative is programmed, plotted 

and studied for the various characteristics of the shape functions, elaborated in context to 

the parameters affecting the properties of shape function. The danger of not a number in 

contribution to meshfree solution errors is highlighted and prevention methodology has 

been implemented to eradicate the error generation.  
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