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Abstract- The effects of an overlapping stenosis on blood flow characteristics in an 
artery have been investigated. To account for the presence of red cells, blood has been 
represented by a macroscopic two-phase model (i.e., a suspension of erythrocytes in 
plasma). The coupled differential equations describing the flow of fluid (plasma) and 
the particle (red cell) phases have been solved and the expressions for the flow 
characteristics, namely, the impedance, the wall shear stress, the shear stress at the 
stenosis throats and the shear stress at the critical height of the stenosis have been 
derived. It is shown that the impedance increases with the hematocrit as well as with 
the stenosis size. The shear stress at the two stenosis throats assumes the same 
magnitude. The shear stress at the stenosis critical height assumes significantly lower 
magnitude than its corresponding value at the throats. With respect to any given 
parameter, the nature of the variations of shear stresses at the throats and at the critical 
height of the stenosis is same as the flow resistance. 
Key Words: Hematorit, impedance, shear stress, stenosis throats, stenosis critical 
height. 
 

INTRODUCTION 
 

The medical term “Stenosis or Arteriosclerosis” means narrowing of any body 
passage, tube or orifice (Young, 1979). Stenosis is an abnormal and unnatural growth 
that develops at various locations of the cardiovascular systems under diseased 
conditions, which occasionally results into serious consequences (Srivastava, 1995). 
The cause for the development of the frequently occurring cardiovascular disease, 
stenosis is related to the nature of blood movement and the mechanical behavior of 
the blood vessel walls. It is well known that the fluid dynamical parameters, 
particularly the high wall shear stress play an important role in the genesis of the 
disease, although the root causes of the formation of stenotic lesions are not well 
understood. Irrespective of the cause, it is well established that once the constriction 
has developed, it brings about the significant alterations in the blood flow, pressure 
distribution, wall shear stress and the flow resistance (impedance). In view of the 
possibility that haemodynamic factors play an important role in the genesis and 
proliferation of the disease has attracted the early investigators including Young 
(1968), Young and Tsai (1973), Deshpande et.al. (1976), Caro et.al. (1978), Ahmed 
and Giddens (1983), and several others to study the blood flow through local 
constrictions, after the first investigation of Mann et.al. (1938). A brief account of 
researches on the topic, reported so far, may be had from Young (1979), Srivastava 
(1995), Sarkar and Jayaraman (1998), Ku (1997), Mishra and Verma (2007), 
Mekheimer and El-Kot (2008), Srivastava and Rastogi (2009), etc. 
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Being a suspension of corpuscles, at low shear rates blood behaves like a non-
Newtonian fluid (Merill et al., 1965; Charm and Kurland, 1965, 1974; Hershey, et al., 
1964; Huckaba and Hahu, 1968). However, the theoretical study of Haynes (1960) 
and experimental observations of Cokelet (1972) indicate that blood can not be treated 
as a single-phase homogeneous viscous fluid in narrow arteries (of 
diameter m1000 ). Skalak (1972) concluded that an accurate description of flow 
requires consideration of erythrocytes (red cells) as discrete particles in small arteries. 
Srivastava and Srivastava (1983) observed that the individuality of red cells (of 
diameter m8 ) is important in such large vessels with diameter up to 100 cells 
diameter. A brief survey of the literature on multiphase blood flow has recently been 
presented by Srivastava (2007). On the other hand, a survey of the literature on 
arteriosclerotic development reveals that the studies conducted are mainly concerned 
with the single symmetric and non-symmetric stenoses. However, the stenosis may 
develop in series (multiple stenoses) or may be of irregular shapes. Assuming the 
pressure variation only along the axis of the tube, Chakravarty and Mandal (1994) 
studied the effects of an overlapping stenosis on arterial flow problem of blood. An 
attempt is made in the present investigation to explore the effects of an overlapping 
stenosis on the flow characteristics of blood taking into account that blood flowing is 
to be treated as macroscopic two-phase fluid (i.e., a suspension of erythrocytes in 
plasma). The wall in the vicinity of the stenosis is usually relatively solid when 
stenoses develop in the living vasculature. The artery length is considered large 
enough as compared to its radius so that the entrance, end and special wall effects can 
be neglected. 
 

FORMULATION OF THE PROBLM 
 

Consider the axisymmetric flow of blood through an artery of circular cross 
section with an overlapping stenosis specified at the position shown in Fig.1.  The 
geometry of the stenosis which is assumed to be manifested in the arterial wall 
segment is described (Chakravarti and Mandal ,1994) as 
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where 0{ ( ), }R z R are the radius of the tube (with, without) stenosis, 0L  is the length of 

the stenosis and d indicates its location,  is the maximum height of the stenosis into 
the lumen, appears at the locations: 0 / 6z d L   and 05 / 6z d L  . The height of 

the stenosis at 0 / 2z d L   is called critical height, is3 / 4 . 
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Fig.1The flow geometry of an arterial overlapping stenosis. 
 

Blood is assumed to be represented by a two-phase macroscopic model, that 
is, a mixture of plasma and erythrocytes (red cells). Due to the complicated structure 
of blood and the circulatory system, to analyse the problem in an exact manner seems 
to be a formidable task. Thus, under the simplified assumptions along with their 
justifications (Srivastava and Srivastava, 1983), the equations describing the steady 
flow of a two-phase macroscopic model of blood may be expressed as   
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with 2 22 /)/(/)/1( zrrrr   as Laplacian operator, r and z  are the 
cylindrical polar coordinate system with z measured along the tube axis and r 
perpendicular to the axis of the tube. (uf, up) and (vf, vp) are the axial and radial 
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components of the (fluid, particle) velocities, f and p  are the actual density of the 

material constituting the fluid (plasma) and the particle (erythrocyte) phases, 
respectively, (1-C) f is the fluid phase and C p is particle phase densities, C denotes 

the volume fraction density of the particles, p is the pressure, s (C) ~ s  is the 

mixture viscosity (apparent or effective viscosity) , S is the drag coefficient of 
interaction for the force exerted by one phase on the other, and the subscripts f and p 
denote the quantities associated with the plasma (fluid) and erythrocyte (particle) 
phases, respectively. The volume fraction density of the particles, C is chosen to be 
constant which is a good approximation for the low concentration of small particles 
(Drew, 1979; Srivastava et al., 1994). Others limitations of the present model are the 
same as discussed in Srivastava and Srivastava (2009). Now following the reports of 
Young (1968), Srivastava and Rastogi (2009), the equations governing the laminar, 
steady, one-dimensional flow of blood in an artery, under the conditions of a mild 
stenosis (Young, 1968: Srivastava and Rastogi, 2009a): ,1/ 0 R )1/2( 0 LRe   

and )1(~/2 00 OLR , are derived (Drew, 1979; Srivastava and Srivastava, 2009) from 

equations (3)-(8)  as  
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        The expressions for drag coefficient of interaction, S and the viscosity  of the 

suspension,  s   for the present study are selected  (Srivastava and Srivastava, 2009) 

as 
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where T is the measure in absolute scale of temperature (K) , 0  is the constant 

plasma viscosity and 0a  is the radius of a particle (red cell). 

 
The boundary conditions are 
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ANALYSIS 
 

An integration of equations (9) and (10), subject to the boundary conditions 
(13) and (14), yields the following expressions for the velocity of fluid and particle 
phases as  
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The flow flux, Q  is now calculated as     
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where  2

08 (1 ) /sC C SR    , a non –dimensional suspension parameter. 

 
One obtains from equation (17) now 
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The pressure drop, ( 0 )p p at z and p at z L     across the 

stenosis in a tube of length L is calculated from equation (18) as  
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The first and the third integrals in the expression for   obtained above are straight 
forward whereas the analytical evaluation of the second integral is almost a 
formidable task and thus will be evaluated numerically. Following now Srivastava 
(1995) and Srivastava and Rastogi (2009a), one obtains the expressions for 
impedance , the wall shear stress in the stenotic region, w , the shear stress at 

stenosis throats, s  and the shear stress at the critical height of the stenosis, c , in their 

non-dimensional form as 
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0  and 0 are the flow resistance and wall shear stress for a normal artery (no stenosis 

) in the absence of the  particle phase (i.e. C=0, Newtonian fluid). 
   
In the absence of the particles (i.e. C=0) the results for a Newtonian fluid are derived 
from Equation (21)-(24), as  
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NUMERICAL RESULTS AND DISCUSSIONS 

 
To discuss the results of the study quantitatively, computer codes are 

developed to evaluate analytical results obtained in equations (21)-(24) at the 
temperature of 370C in a tube of radius 0.01cm for various parameter values selected 
from Young (1968), Srivastava (1995) and Srivastava and Rastogi (2009a). The 
parameter values are: d(cm) = 0; L0 (cm ) = 1; L(cm) = 1, 2, 5 ; C = 0, 0.2, 0.4, 0.6; 

0/ R =0, 0.05, 0.10, 0.15, 0.20. It is to note that present study corresponds to the case 

of a Newtonian fluid and no stenosis for parameter values C=0 and 0/ R =0, 

respectively. 
  The impedance (resistance to flow), λ increases with hematocrit, C for any 

given stenosis height, 
0/ R  and the flow characteristic, λ increases with stenosis 

height, 0/ R  for any given hematocrit, C (Fig.2). The blood flow characteristic, λ 

decreases with increasing tube length for any set of other parameters given (Fig.3), 
which in turns implies that λ increases with the stenosis length  

                       

0.00 0.05 0.10 0.15 0.20
1.0

1.5

2.0

2.5

3.0

0.6

Fig.2 Variation of impedance, with /R
0
 for different C.

L0=L=1
Numbers C

0.2
0.4

0



/R0

 



e-Περιοδικό Επιστήμης & Τεχνολογίας                                                                                      
e-Journal of Science & Technology (e-JST) 

 
 

                                      (6), 5,   Noe 2010                                                                                               26 
 
 
 
 

26

 

0.00 0.05 0.10 0.15 0.20

1.2

1.5

1.8

2.1

2.4

Fig.3 Variation of impedance, with /R
0
 for different L and C.

(5,0)

(5,.4)

(2,0)

(2,.4)

(1,0)

L0=1
Numbers (L,C)

(1,.4)



/R0

 
L0. The flow resistance, λ is seen steeply increasing with increasing hematocrit, C for 
any given  
 
stenosis height, 

0/ R  (Fig.4). 

0.0 0.1 0.2 0.3 0.4 0.5 0.6

1.2

1.5

1.8

2.1

2.4

2.7

3.0

Fig.4 Variation of impedance, with C for different /R
0
.

L0=L=1
Numbers /R0

0

.05

.10

.15

.2



C

 
The wall shear stress distribution in the stenotic region, τw  assumes higher 

magnitude for higher stenosis height, 
0/ R  and also for higher hematocrit, C. The 
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flow characteristic, τw rapidly increases from its approached value at 0z  to its peak 
value in the upstream of the first stenosis throat at z/L0=0.167, it then decreases 
steeply in the downstream of the first throat to its magnitude at the critical height 
(0.75

0/ R ) of the stenosis at /2Lz 0 . τw further increases steeply in the upstream of 

the second stenosis throat and attains its peak magnitude (same as at the first throat)  
at the second stenosis throat at  z = 0.833, and then decreases rapidly to the same 
magnitude as its approached value at the end point of the constriction profile at 
z/L0=1. As expected, the shear stress at two stenosis throat has the same magnitude. 
One notices that for any given set of parameters, there occurs a significant difference 
in the magnitude of the shear stresses at the stenosis throats and at the critical height 
of the stenosis (Fig.5). One observes that the flow characteristic, shear stress at 
stenosis throats τs increases with hematocrit, C and the stenosis size (height & length).   

 

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

Fig.5 Wall shear stress distribution in stenotic region, wfor 
         different C.

L0=L=1
/R0=0.15
Numbers C
___ one-layered(=1)
.....  two-layered(<1)

(.15,.6)

(.15,.4)

(.1,.6)

(.15,.0)

(.1,.4)

(.1,0)

w

z/L0

 
                         
 
 
 
 
 
 
 
 
 
 
 



e-Περιοδικό Επιστήμης & Τεχνολογίας                                                                                      
e-Journal of Science & Technology (e-JST) 

 
 

                                      (6), 5,   Noe 2010                                                                                               28 
 
 
 
 

28

 
 

0.00 0.05 0.10 0.15 0.20

1.2

1.5

1.8

2.1

2.4

.6

Fig.6 Variation of shear stress at stenosis throats, s with
          /R0 for different C.

0

.4
.2

L0=L=1
Numbers C

s

/R0

 
   
 
 
 
 
 
          
 
  
 
 
 
 
 
 
 
 
 
 
 0.0 0.2 0.4 0.6

1.2

1.5

1.8

2.1

2.4

2.7

3.0

Fig.7 Variation of shear stress at stenosis throats, s with
         C for different /R0.

s

C

L0=L=1
Numbers /R0

0

.05

.10

.15

.2



e -Journal of Science & Technology (e-JST)                                                                                      
e-Περιοδικό Επιστήμης & Τεχνολογίας 

  
 

http://e-jst.teiath.gr                                                                                                         29 
 
 
 
 

29

0.00 0.05 0.10 0.15 0.20
1.0

1.2

1.4

1.6

1.8

2.0

Fig.8 Variation of shear stress at critical stenosis height, 
      c with /R0 for different C.

.6

.4 .2

0

L0=L=1
Numbers C

c

/R0

 
With respect to any given parameter, the nature of the variations of τs is similar 

to that the impedance, λ (Fig 2 and 6). The magnitude of the shear stress, τs is higher 
than the corresponding magnitude of the impedance, λ (Fig.7). The nature of the 
variations of the shear stress at the critical stenosis height (at z/L0=0.5), τc is similar to 
that of the flow resistance, λ and shear stress at stenosis throats, τs. One notices that 
the flow characteristic, τc assumes significantly lower magnitude than the 
corresponding values of both λ and τs (Figs. 8 and 9). 
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 The discussions presented above clearly reveals the significance of the present 
study. The two-phase fluid seems to be more sensitive to the stenosis than the single 
phase fluid (i.e., C=0, Newtonian fluid). The condition 0/ R << 1, limits the 

usefulness of the present study to very early stages of vessel constrictions, which 
enables one to use the fully developed flow equations and leads to the locally 
Poiseuille like flow and closed form solutions. Use of the parameter, 0/ R  is 

restricted to the values up to 0.15 as beyond this value a separation in the flow may 
occurs even at a relatively small Reynolds number (Young, 1968; Srivastava, 1995). 
Although, the study has been conducted under various restrictions and simplification, 
it still enables one to observe the effects of red cells on the flow characteristics due to 
an overlapping stenosis in arteries. 
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