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Abstract. Presented herein is the study of pulsatile flow of blood through stenosed 
artery by modeling blood as Herschel–Bulkley fluid. The Herschel–Bulkley fluid has 
two parameters, the yield stress θ and the power index n. Perturbation method is used 
to solve the resulting quasi-steady nonlinear coupled implicit system of differential 
equations. The effects of pulsatility and non-Newtonian nature of blood on velocity, 
flow rate, wall shear stress and longitudinal impedance of the artery are discussed. 
The width of the plug core region increases with increasing value of yield stress at any 
time. The velocity and flow rate decrease, whereas wall shear stress and longitudinal 
impedance increase for increasing value of yield stress with other parameters held 
fixed. On the other hand, the velocity, flow rate and wall shear stress decrease but 
resistance to flow increases as the radius of artery increases with other parameters 
fixed. The results for power law fluid, Newtonian fluid and Bingham fluid are 
obtained as special cases from this model.  
 
Keywords. Pulsatile blood flow; Stenosed artery; Herschel–Bulkley fluid; Yield 
stress; Wall shear stress; Longitudinal impedance. 
 
Introduction 
 
Diseases of the heart and circulatory system are still a major cause of death in the 
industrialized world. Blood flow characteristics in arteries can be altered significantly 
by arterial disease, such as stenosis and aneurysm. The altered haemodynamics may 
further influence the development of the disease and arterial deformity, and change 
the regional blood rheology [23] (Smedby, 1997). The study of physiologically 
realistic pulsatile through stenosis has profound implications for the diagnosis and 
treatment of vascular disease. The possibility that hemodynamic factors may 
participate in the genesis and proliferation of atherosclerosis has fostered increased 
study of flow through constrictions during the past decade [2,9] (Despande et al., 
1976; Back et al., 1986). Realizing the fact that the pulsatile nature of the flow cannot 
be neglected, many theoretical analysis and experimental studies of the flow through 
stenosis have been performed [5,15,17,19,20]. In 1987, Haldar [11] dealt with the 
problem of oscillatory blood flow through a rigid tube with mild constriction under a 
simple harmonic pressure gradient and has examined the effect of stenosis on the flow 
field. In most of the studies mentioned above, the flowing blood is assumed to be 
Newtonian. The assumption of the Newtonian behaviour of blood is acceptable for a 
high shear rate flow in the case of a flow through larger arteries. It has now been well 
accepted that blood, being suspension of cells, behaves like a non-Newtonian fluid at 
allow shear rate in smaller arteries under certain flow conditions [4,10,13,14,18]. In 
2004, Chakravarty et.al. [4] presented a theoretical investigation to examine some of 
the significant characteristics of the two-layered non-Newtonian rheology of blood 
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flowing through a tapered flexible artery in the presence of stenosis under a pulsatile 
pressure gradient. The papers [6,7,8,21,26] provide a small sample of the research in 
non-Newtonian effects on blood flow. A less-studied area is the usage of numerical 
optimization procedures to guide the design process that involves blood flow. It is, 
therefore of interest to consider simultaneously the effects of pulsatility, stenosis, and 
non-Newtonian behaviour of blood on its flow. 
Aroesty and Gross [1] have studied the pulsatile flow of blood in small blood vessels 
and Chaturani and Ponnalagar Samy [6] extended this theory to study pulsatile flow of 
blood in stenosed arteries, modeling blood by Casson fluid. Scott Blair and Spanner 
[21] reported that blood obeys Casson equation only for moderate shear rate and that 
there is no difference between Casson’s and Herschel–Bulkley’s plot over the range 
where Casson’s plot is valid for blood. It has been reported by Tu and Deville [24] 
that the assumption of Newtonian behaviour of blood is acceptable for high shear rate 
flow, e.g. in the case of flow through large arteries. It has also been pointed out that in 
some diseased conditions, e.g. patients with severe myocardial infarction, 
cerebrovascular diseases and hypertension, blood exhibits remarkable non-Newtonian 
properties [13]. It is true that the Casson fluid model can be used for moderate shear 
rates γ < 10 s−1 in smaller diameter tubes whereas, the Herschel–Bulkley fluid model 
can be used at still lower shear rate of flow in very narrow arteries where the yield 
stress is high [17] and [19]. Also Herschel–Bulkley fluid model can be reduced to that 
of power law, Bingham and Newtonian fluid models by suitable choice of the 
parameters. The same model can be used for larger arteries where the effect of yield 
stress can be ignored. Hence it is appropriate to model blood as a Herschel–Bulkley 
fluid rather than Casson fluid.  
In this paper, an attempt has been made to study the effects pulsatility and non-
Newtonian nature of blood on physiologically important flow quantities such as 
velocity, flow resistance and wall shear stress for blood flow in an artery by modeling 
blood as Herschel–Bulkley fluid. The physical quantities involved in the problem are 
non-dimensionalized and the expressions for flow quantities such as velocity, flow 
rate, wall shear stress and longitudinal impedance of the artery are obtained for 
pulsatile flow. The effects of pulsatility, generalized Womersly frequency parameter 
and yield stress of the fluid on velocity profiles, flow rate, wall shear stress and 
longitudinal impedance are analyzed. 
 
Formulation of the Problem 
 
Consider the flow of blood in an artery modeled as a rigid circular tube of radius . 
The blood is modeled as a Herschel–Bulkley fluid. It is assumed the pulsatile flow in 
the artery is due to a prescribed periodic pressure gradient along the axis of the artery. 
The flow is taken to be axially symmetric, laminar and fully developed. The length of 
the artery is assumed to be large enough when compared to its diameter so that 
entrance, end and special wall effects can be neglected. We use the cylindrical polar 
coordinates , where and denote the radial and axial coordinates and is the 
azimuthal angle. Fig. 1 shows the geometry of the stenosed artery.  
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The momentum equations are 

    
1

( )
u p
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t z r r

   
  

  
                                                                   (1)           

where   denote the density, u  the axial velocity, t  the time, p  the pressure and 
 the shear stress. 
 
The general form of the constitutive equation for Herschel-Bulkley fluid is taken to 
be. 
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where H  is the yield stress, u is the axial velocity, ` `n  is the power index and H  is 

the coefficient of the viscosity for Herschel-Bulkley fluid with dimention 
1 2( )nML T T 

. 
The relation corresponds to the vanishing of the velocity gradient in region in which 
the shear stress is less than the yield stress. This implies a plug flow when-

ever y  . However, if the shear rates in the fluid is high y  , then a fluid 

behaviour is indicated.  
The boundary conditions are: 
 
  is finite   at   0r          and      0u    at    ( )r R z                                           (4) 
 
Let us consider the pulsatile laminar flow of blood in the z direction through a 
complient tube whose radius varies as 
 



e-Περιοδικό Επιστήμης & Τεχνολογίας                                                                                      
e-Journal of Science & Technology (e-JST) 

 

                                      (4), 5,  July 2010                                                                                            52 
 

52

( 1)
0

0

( )
1 ( ) ( )m mR z

L z d z d
R

        ,     0d z d L    

          = 1,           otherwise                                                                                          (5) 
 
Here the parameter   is expressed as 
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that 1
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
. ( )R z  and 0R  are the radius of artery with and without stenosis  

respectively.  
 
Method of solution 
 
Let 0q be the absolute magnitude of the typical pressure gradient. Let 
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The dimension of the 0  is the same as the dimention of Newtonian fluid’s velocity. 

  
Following non –dimensional variables are introduced: 
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where   is the frequency of oscillation of the pulsatile flow and   is called 
generalized Womersly frequency parameter. The pressure gradient can be written as 
 

                        1( , ) ( ) ( )
p

z t q z f t
z


 


                                                                   (8) 
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,  1( ) 1 'sinf t A t  , and 'A  is the amplitude of the 

flow. Using the non- dimensional variables eqs. (1), (2) and (3) reduce to 
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And                 (1 )
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The boundary conditions in dimensionless form are: 
 
  is finite at      0r     And    0u    at    ( )r R z                                             (11)   
 
   
The geometry of the stenosis in dimensionless form is given by 
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Here the parameter   is expressed as  

                
/( 1)

0 0

m m
m

m
R L

   

Where   denote the maximum height of the stenosis at  0
/ 1m m

L
z d

m    such 

that 1
R


 . ( )R z and 0R  is the radius of artery with and without stenosis respectively.  

 
Then the volume flow rate Q  is given by 
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0
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Solution 
 
The velocity u  the shear stress  , the plug core radius pR  and plug core velocity pu  

are assumed to possess the following form: 
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where ( 1.0)   is the Womersly frequency parameter, From Eqs. (10), (15) and (16). 
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Integrating equation (18) and using the boundary condition of equation (11) 
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Substituting Eqs (14) and (15) into equation (10). We obtain 
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Substituting Eq (20) in Eq (21) and integrating and using the boundary condition of 
Eq (11), we obtain 
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The plug core velocity 0 pu  can be obtained from Eq (24) as 
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Here 0 pR  is the first approximation plug core radius. Neglecting the term 2 and 

higher power of   in Eq (17), the expression for 0 pR can be obtained from Eq (21) as 
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Similarly the solution for 1 , 1u and 1pu  can be obtained as. 
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 , one can easily obtained the expression for velocity 

distribution from Eqs. (13),(22) and (26). The shear stress on the wall w  is given by 

2
2 1 21

( ) ( ) ( ( ) ( )) ( )
2 1 2 ( 1)( 3)

n
w

R k R
q z f t R q z f t M k

n n n n
    

             
 

                                                                                                                             (29) 
The volumetric flow rate is given by 
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From Eq  (31) for small 
k

R
 and 1  . So neglecting the term 2  and higher 

power of  . 
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The resistance to flow   is defined as  

                             1 2( ) ( ) / ( )p p f t Q t                                                            (32) 

The second approximation plug core radius 1pR   can be obtained by neglecting the 

term with 
4  and the higher power of    in Eq (16) in the following manner 
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The shear stress 
2

0 1( )      at  pr R    is given by  
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The longitudinal impedance of the artery is given by 
 

                                                      
( )q t

Q
                                                                (36) 

 
Results and Discussions 
 
The change in the flow pattern and the effects of non-Newtonian nature of blood in an 
artery are studied and the flow is pulsatile. Blood has been modeled as Herschel–
Bulkley fluid which has a definite yield stress θ and power index n. The results are 
analyzed for different values of non-dimensional variables namely the catheter radius 
ratio k, yield stress , amplitude 'A  and generalized Womersly frequency parameter 
α. 



e-Περιοδικό Επιστήμης & Τεχνολογίας                                                                                      
e-Journal of Science & Technology (e-JST) 

  

http://e-jst.teiath.gr                                                                                    57 

57

 
Fig. 2 . Variation of velocity with radial distance during a flow cycle with θ = 0.25, 'A = α = 0.5 and 

n = 0.95 
The variation of velocity with radial distance r during a flow cycle when θ = 0.25, 
α = 'A  = 0.5 for n = 0.95 and 1.05 are shown in Fig. 2. The fluid velocity increases 
from 0° to 90° and then decreases from 90° to 270° and again increases from 270° to 
360° and there is no flow at 270°. As n increases from 0.95 to 1.05, the velocity 
decreases slightly for a given 'A , θ, α and t.  
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      Fig. 3. Variation of velocity with radial distance for different fluids with  'A  = α = 0.5, and t = 45° 
The variation of velocity with radial direction for different fluids is shown in Fig. 3. 
We notice that the velocity is greater for power law fluids compared to Herschel–
Bulkley fluids for given n and any value of θ. Fig. 3 depicts the effects of the non-
Newtonian nature of the fluids on velocity in radial direction. 
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Fig. 4. Variation of plug flow velocity in a flow cycle for different values of 'A  and θ  with  α = 0.5 
and n = 0.95 

Fig.4 depicts the variation of plug flow velocity in a cycle of oscillation for different 
values of amplitude 'A  and yield stress θ  with α = 0.5 and n = 0.95. For a given 'A , 
θ and n, it is clear that the plug flow velocity increases as t increases from 0° to 90° 
and then decreases from 90° to 270° and again increases from 270° to 360°. The plug 
flow velocity is maximum at 90° and minimum at 270°. Also it is observed that the 
plug flow velocity decreases as the yield stress θ increases for a given 'A . For a given 
θ, as the amplitude increases from 0.3 to 0.5, the plug flow velocity increases when t 
lies between 0° and 180° and it decreases when t lies between 180° and 360°. The 
same behaviour is observed for n = 1.05. It is noticed that the plug flow velocities for 
Herschel–Bulkley fluid with n = 0.95 and n = 1.05 are slightly higher than the values 
for Casson fluid. Fig.4 analyses the effects of yield stress on plug flow velocity during 
a time cycle.  
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                                   Fig. 5. Variation of flow rate in a cycle of oscillation for different values of 'A  and θ with 
n = 0.95 and α = 0.5. 

Fig. 5 depicts the variation of flow rate during a cycle of oscillation for different 
values of amplitude 'A  and yield stress θ with α = 0.5 for n = 0.95. The flow rate 
increases as t increases from 0° to 90°, decreases when t increases from 90° to 270° 
and again increases as t increases further from 270° to 360° for fixed values of 'A , θ, 
and α. The flow rate is maximum when t = 90° and minimum when t = 270°. This is 
an obvious result from the velocity distribution. It is observed that the flow rate 
decreases as the yield stress θ increases for a given value of amplitude 'A  and for any 
value t. As the amplitude 'A  increases, the flow rate increases when t lies between 0° 
and 180° and it decreases when t lies between 180° and 360°. It is noticed that the 
flow rate decreases slightly when the power index n increases from 0.95 and 1.05, 
keeping all the other parameters fixed. Fig. 5 analyses the effects of yield stress on 
flow rate during a time cycle. 
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Fig. 6. Variation of flow rate in a cycle of oscillation for different values of α with n = 0.95, 'A  = 0.5 
and θ = 0.5. 

 
Fig.6 shows the variation of flow rate in a flow cycle for different values of α when 
n = 0.95, θ = 0.25 and 'A  = 0.5. It is observed that the variation of flow rate with 
increasing α is almost negligible. When the flow rate values for Herschel–Bulkley 
fluid are compared with that of Casson fluid for α = 'A  = 0.5 and θ = 0.05, the flow 
rates for Herschel–Bulkley fluid for n = 0.95 and 1.05 are almost double than that of 
Casson fluid for any t. Fig. 6 discusses the effects of the pulsatility of blood flow 
during a time cycle.  
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         Fig. 7. Variation of wall shear stress in a cycle of oscillation for different values of 'A  and θ with 

n = 0.95 and α = 0.5. 
The variation of wall shear stress in a cycle of oscillation for different values of 
amplitude 'A  and yield stress θ with α = 0.5 for n = 0.95 is shown in Fig.7. The wall 
shear stress increases as t increases from 0° to 90°, decreases as t increases from 90° 
to 270° and again increases as t increases further from 270° to 360° when 'A , α, θ and 
n are fixed. The maximum wall shear stress is attained at t = 90° and the minimum 
wall shear stress is attained at t = 270°. For the given values of n, t, and 'A , the wall 
shear stress increases as the yield stress increases. It is noticed that as the amplitude 

'A  increases, the wall shear stress increases when t lies between 0° and 180° and it 
decreases as t lies between 180° and 360° for the given values of  α, θ and n. It was 
observed that for any t and fixed values of α, θ and 'A , the wall shear stress increases 
slightly for n = 1.05 compared to that of n = 0.95. Fig. 7 shows the variation of wall 
shear stress with amplitude 'A  and yield stress θ during a time cycle.  
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Fig. 8. Variation of longitudinal impedance in a cycle of oscillation for different values of 'A  and θ 

with n = 0.95 and α = 0.5. 
 Variation of longitudinal impedance during a flow cycle for different values of 
amplitude 'A  and yield stress θ with α = 0.5 and n = 0.95 is depicted in Fig. 8. As 
seen from  Fig. 8, the longitudinal impedance decreases as t increases from 0° to 90°, 
it increases from 90° to 270° and decreases from 270° to 360° for given values of 'A , 
θ, and α. The longitudinal impedance is minimum at 90° and maximum at 270°. It is 
clear that the longitudinal impedance increases considerably as the yield stress θ 
increases from 0.05 to 0.15 for any t and for a given value of 'A . For a fixed value of 
yield stress θ, the longitudinal impedance increases slightly when t lies between 0° 
and 180° and decreases considerably when t lies between 180° and 360° as the 
amplitude increases from 0.3 to 0.7 with the given values of α. Fig. 8 depicts the non-
Newtonian nature of the fluid on longitudinal impedance.  
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           Fig. 9. Variation of plug core radius with time at the centre of Stenosis for different values of 
'A , θ  and α. 

 
 
Fig. 9 shows the effects of the various parameters ( , , , , )A t   on the plug core 

radius. In the time cycle, it starts decreasing as t goes from 00  to 090  and from 0270  
to 0360  and reaches its minimum at 090t   and starts increasing as t goes from 090 to 

0270  and reaches its maximum at 0270t  . It can be observed that an increase in the 
yield stress leads to an increase in the plug core radius, whereas its variation with   is 
of opposite nature. Also it is seen that the plug core radius changes with pulsatile 
Reynolds number   and this change is higher for higher values of . It may be noted 
that the mean plug core diameter is greater than the steady core diameter.  
 
Conclusion 
 
The present study deals with the pulsatile flow of Herschel–Bulkley fluid through 
stenosed artery. For the fixed values of n and 'A , the width of the plug flow region 
increases as the yield stress increases. The width of the plug flow region decreases as t 
increases from 0° to 90° and then increases as t increases from 90° to 270° and 
decreases when t increases further from 270° to 360° for fixed values of n, 'A  and θ. 
During a cycle of oscillation, the maximum flow occurs at t = 90° and the minimum 
flow occurs at t = 270°. As the power index n increases from 0.95 to 1.05, the velocity 
and flow rate decrease but the wall shear stress and longitudinal impedance increase 
while all the other parameters are fixed. For the fixed values of the parameters 'A , n 
and α, the velocity and flow rate decrease whereas wall shear stress and longitudinal 
impedance increase with increasing values of yield stress θ. As the generalized 
Womersly frequency parameter α increases, the wall shear stress decreases when t lies 
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between 0° and 90°, and increases when t lies between 90° and 270° and decreases 
when t lies between 270°and 360° when 'A , n and θ are held constant. The variations 
in velocity, flow rate and longitudinal impedance are negligible due to the variation in 
generalized Womersly frequency parameter α. For the fixed values of θ with 
increasing 'A , the width of the plug flow region decreases as t lies between 0° and 
180° but increases when t lies between 180° and 360°.  
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