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Abstract. The aim of this study is to propose a Probabilistic Neural Network (PNN) 
classifier system that can operate on a consumer-level graphics processing unit 
(GPU) and thus, harvest its tremendous parallel computation potential in order to 
accelerate the training phase. Therefore, the computationally intensive training of a 
PNN classifier system incorporating the exhaustive search of feature combinations 
and the leave-one-out techniques, was effectively ported on a medium class GPU 
device. Programming of the GPU was accomplished by means of the CUDA 
framework. The proposed system was tested on a real training dataset comprising 80 
patterns, each consisting of 20 textural features extracted from digital mammograms 
(40 normal and 40 containing micro-calcifications) by an experienced physician. The 
developed GPU-based classifier was trained and the required time was measured. 
The latter was then compared with the respective training time of the same classifier 
running on a typical CPU and programmed in the C programming language. 
According to experimental results, the proposed GPU-based classifier achieved 
significantly higher training speed, outperforming the CPU-based system by a factor 
that ranged from 10 to 75 times. 

1 Introductio n 
Recently, computer-aided diagnosis (CAD) has been embedded in the daily clinical 

routine assisting the detection of breast cancer. Moreover, several studies[1-6] suggest 
that utilization of CAD systems seems to increase the detection rates of breast 
cancer[7]. One of the challenges encountered during the design of a CAD system is 
that, it takes enormous time to optimally train the pattern recognition system which 
typically lies in its core. Thus, training of a classification scheme on a normal 
computer may take hours, or even days. However, once training is completed, the 
characterization of a case takes infinitesimal time. 

One of the solutions proposed, so as to tackle the aforementioned problem, is 
parallel processing typically involving powerful supercomputers, or server clusters. 
Unfortunately, this kind of hardware is expensive and therefore accessible only to few 
people. However, a new promising development in this regard is the emergence of 
consumer-level graphics processing units (GPUs) as a mainstream computing 
platform[8]. 
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Over the past few years, Graphics Processing Units have evolved from the 
traditional fixed-function 3D graphics pipelines used as image-synthesis devices, into 
powerful, programmable, highly parallel computing devices, becoming an 
increasingly popular tool in many research fields including image analysis. This 
dramatic shift was the inevitable consequence of consumer demand for videogames, 
advances in manufacturing technology, and the exploitation of the inherent 
parallelism in the graphics pipeline[9].   

Today, graphics processing units constitute a low-cost, low-power (watts per flop) 
very high performance alternative to conventional microprocessors. For example, a 
Geforce 8800 GTX with a theoretical peak 520 GFLOPs (1 GFLOP equals 1 billion 
floating point operations per second), and dissipating 150 watts, costs about $200. 
This is an order of magnitude faster than ordinary CPUs. 

Nevertheless, the use of GPUs for general purpose computations in various 
scientific fields did not begin to gain momentum until the introduction of specialized 
programming frameworks, such as Stanford University’s BrookGPU language[10], 
ΝVidia’s CUDA (Compute Unified Device Architecture)[11], Microsoft’s AP 
(Accelerator Project)[12], and University of Waterloo’s Sh Embedded Meta-
programming Language[13], which provided an easy way to harvest the GPU’s 
tremendous parallel computation potential.  

Previous studies in the field of image processing and analysis that attempt to 
benefit in speed from the utilization of GPUs, include implementations of neural 
networks[14], Kernel methods for Support Vector Machine classifiers[15], k-Nearest 
Neighbor search methods[16], and algorithms for computed tomography 
reconstruction[8]. 

The aim of this study is to propose a GPU-based solution that will accelerate the 
training of a Probabilistic Neural Network classifier. 

2 Materials and Methods 
The Probabilistic Neural Network (PNN) classifier was introduced by Donald F. 

Specht back in the late 1980s [17]. Having solid theoretical foundations based on 
Parzen-Window technique and Bayes theorem, PNN classifier has been used in a wide 
variety of applications. Equation 1 summarizes the discriminant function of a PNN 
classifier. Hence for class j:  
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that leads to a discriminant function with a Gaussian kernel:  
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where x denotes the test pattern vector to be classified, xi the i-th training pattern 
vector, Nj the number of patterns in class j, σ a smoothing parameter, and p is the 
dimensionality of the feature vector. The test pattern x is then classified under the 
class with the larger discriminant function value. 

Although, easy training is considered to be one of the most important advantages 
of the PNN[17], optimal design of a PNN classifier, as a reliable pattern recognition 
system, typically involves a feature selection and an evaluation techniques. In the case 
of robust, but computationally intensive techniques, such as the exhaustive search of 
feature combinations and the leave-one-pattern-out evaluation, are selected the 
necessity for acceleration of the training procedure becomes apparent. 

In order to adapt the training of the aforementioned classifier to the inherently 
parallel SIMD (Single Instruction Multiple Data) architecture of a GPU, the whole 
procedure had to be broken into many tasks that run concurrently. In technical terms, 
the challenge was to design the kernel, or the small code fragment running in multiple 
threads, in an optimal way in order to evenly distribute the workload and maximize 
performance.  

In the proposed implementation, the first step involved the enumeration of all 
possible feature combinations. Following the transfer of the training dataset from the 
memory of the host PC to the GPU’s memory, each thread was assigned with a single 
feature combination. Specifically, the task of each thread, running concurrently, was 
to train the PNN classifier with this unique feature combination and evaluate its 
classification accuracy by means of the leave-one-out technique. Upon completion of 
all threads, results were transferred back to the host’s memory for presentation. It 
should be noted that the NVidia’s CUDA GPU programming framework was selected 
for developing the proposed implementation, mainly due to its maturity.  

In order to evaluate its performance, the developed GPU-based classifier was 
trained and the required training time was measured. The latter was then compared 
with the respective training time of the same classifier running on a typical CPU and 
programmed in C programming language. Both the GPU and the CPU-based systems 
were trained on the same training dataset, comprising actual textural features. 

Specifically, a total number of 80 ROIs (40 normal and 40 containing micro-
calcifications) were extracted from digital mammograms by an experienced physician. 
Hence, the training dataset included 80 patterns with each pattern consisting of 20 
textural features based on the ROI’s image histogram (1st order statistics) and the co-
occurrence & run length matrices (2nd order statistics)[18, 19]. 

All experiments were performed on a desktop PC featuring a Pentium 4 CPU at 
3.40GHz with 2GB of RAM, and hosting a GeForce 8800 GT with 512MB of DDR3, 
which is considered a fairly medium class GPU. 

3 Results and discussion 
Table 1 illustrates the computation time measured by both classifier systems. As 

far as the GPU is concerned, total processing time includes also the time required for 
memory transfers between the host’s and the GPU’s memory. As one can easily 
observe, the proposed GPU based PNN classifier system achieved significantly lower 
training times in almost all cases [Figure 1]. 
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Exhaustively 

Combined 
Features 

Number of 
Combinations 

PNN Training Time (ms) CPU/GPU 
Training. 

Time 
CPU 

GPU 
Processing Transfer Total 

2 of 20 190 1007.87 97.95 0.79 98.74 10.2 
3 of 20 1140 7940.35 274.47 1.33 275.80 28.8 
4 of 20 4845 40937.44 1185.85 1.95 1187.80 34.5 
5 of 20 15504 153122.98 2979.28 4.15 2983.43 51.3 
6 of 20 38760 436336.44 7269.74 7.72 7277.46 60.0 
7 of 20 77520 977416.56 12961.83 12.74 12974.57 75.3 
Sums 137959 26.9 mins   0.4 mins 65.2 

Table 1. Comparison of the computation time required by both systems, given in 
miliseconds.  

 
The ratio of CPU to GPU training time provides a measure of the achieved 

acceleration.  

 

Figure 1. Evolution of the required training time for both the GPU and the CPU based 
classifiers. 

 
In case of exhaustive combination of 2 out of 20 features GPU performed only 

10.2 times faster as depicted in figure 2. This is mainly due to the fact that for 190 
feature combinations, only a small number of concurrent threads opened, and the 
GPU’s processing potential was not fully exploited. On the other hand, best 
performance enhancement was observed in the case of exhaustive combination of 7 
out of 20 features combinations, where the GPU outperformed the CPU 75.3 times by 
employing 77520 threads. 
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Figure 2.Performance improvement achieved 

 
It should be noted that this speed-up did not have any impact on the classification 

accuracy of the proposed system, as both systems provided identical results. Because 
the proposed GPU based classifier system opened one thread per feature combination, 
it reached the memory limits of the GPU device used. Future memory or algorithm 
optimization could lead to further increase in performance. 

4 Conclusions 
According to experimental results, if efficiently programmed, GPUs have the 

potential to accelerate the training of a PNN classifier. The proposed GPU based 
classifier system achieved higher training speeds in all cases, peaking its performance 
as the number of concurrent threads maximized. However there are certain memory 
issues that, if addressed, can lead to further increase in performance. 
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