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Abstract 

Peristaltic pumping of a particle-fluid suspension in a catheterized circular tube has 
been investigated. The coupled differential equations for both the fluid and the 
particle phases have been solved and the expressions for the flow rate, pressure drop, 
friction forces at the tube and the catheter wall have been derived. It is found that the 
pressure drop increases with the flow rate for any given particle concentration, 
catheter size and amplitude ratio. Also for any given flow rate and the catheter size, 
pressure drop increases with the particle concentration, and assumes significantly 
higher magnitude in a catheterized tube than its corresponding value in uncatheterized 
tube. The friction forces (at tube as well as the catheter wall) possess characteristics 
similar to the pressure drop (an opposite characteristics to the pressure rise) with 
respect to any parameter. The friction force at the tube wall is found to be 
significantly higher in magnitude than the corresponding friction force at the catheter 
wall. 

Keywords:  Peristaltic, catheter, flow-rate, pressure drop, friction force, particle                  
concentration. 

                                                  INTRODUCTION 

 Since the first investigation of Latham (1966), fluid transport through flexible 
tubes by means of peristaltic wave motion of the tube wall has been the subject of 
engineering and scientific research for over four decades. The peristaltic motion 
consists in a narrowing and traverse shortening of a portion of the tube, which then 
relaxes while a lower portion becomes shortened and narrowed. During the course of 
the peristaltic motion the tube wall is excited by traveling waves that cause the points 
on the tube transversally to the direction of the fluid motion. Peristaltic transport is 
therefore a form of fluid transport that occurs when a progressive wave of area 
contraction or expansion propagates along the length of a distensible duct containing 
liquid or mixture. The phenomenon of such transport is called peristalsis. Heart-lung 
machine, finger and roller pumps have been fabricated using the mechanism of 
peristalsis. Some aquatic animals use peristalsis as a means of locomotion. Besides, 
it’s various engineering applications, it is also known to be responsible for fluid 
transport in many biological organs including in the vasomotion of small blood 
vessels such as arterioles, venules and capillaries (Srivastava and Srivastava, 1984). 
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 Shapiro et al. (1969) and Jaffrin and Shapiro (1971) explained the basic 
principles and brought out clearly the significance of the various parameters 
governing the flow. In various details, a review of much of the early literature up to 
the year 1983 was presented in an article by Srivastava and Srivastava (1984). The 
significant contributions between the years 1984 and 1994 are referenced well in 
Srivastava and Saxena (1995). The important studies of recent years include the 
investigations of Srivastava and Srivastava (1997), Mekheimer et al. (1998), Muthu et 
al. (2001), Srivastava (2002), Misra and Pandey (2002), Hayat et al. 
(2002,2003,2004), Mekheimer(2003), Misra and Rao (2004), Hayat et al. (2005), 
Hayat and Ali (2006 a, b), Srivastava (2007a), Medhavi and coworkers (2008 
a,2008b,2009), Hayat and Coworkers (2008 a,b), Ali and Hayat (2008), and a few 
others. 

 The theory of particulate suspension is very useful in understanding of a 
number of diverse physical problems concerned with powder technology, fluidization, 
sedimentation, combustion, aerosol filtration, atmospheric fallout, lunar ash flow, 
environmental pollution, etc. Most recently, the interest has developed in applying the 
theory of particle-fluid suspension to physiological flows including the vasomotion of 
small blood vessels such as arterioles, venules and capillaries. Peristaltic pumping of a 
particle-fluid mixture has been investigated by Hung and Brown (1976), Takabatake 
and Ayakawa (1982), Srivastava and coworkers (1989, 1997, 2002), Mekheimer et al. 
(1998), Medhavi and Singh (2008 b, 2009) and several others. 

 The use of catheters is of immense importance in many areas of technical 
importance and has become a standard tool for diagnosis and treatment of certain 
cardiovascular diseases (McDonald, 1986, Back and Coworkers, 1994, 1996; Sarkar 
and Jayaraman 1998; Sankar and Hemlatha, 2007) in modern medicine. The 
mathematical model corresponds to the flow in the annular space of two concentric 
tubes. The geometrically similar biomechanical problem of peristaltic flow to study 
the effects of inserted catheter on ureteral flow was analyzed by Roos and Lykoudis 
(1970). A number of authors including Hakeem et al. (2002), Hayat et al. (2006) and 
most recently Srivastava (2007a) have explained the effects of an endoscope on flow 
of chyme in gastrointestinal tract. 

 The aim of the present investigation is to study the peristaltic pumping of a 
particulate suspension in a circular tube with an inserted catheter. In view of the 
observations (Srivastava, 1995, 2007b) that the particulate suspension model (i.e., a 
suspension of red blood cells in plasma) is of particular importance to study the flow 
of blood in narrow arteries, it is strongly believed that the research reported here may 
be applied to explain to peristaltic induced flow of blood through narrow catheterized 
arteries.  

FORMULATION OF THE PROBLEM 

 Consider the axisymmetric flow of a particle-fluid mixture in a circular 
cylindrical tube of radius a with an inserted catheter of radius a1. The catheter wall is 
rigid and the tube wall is flexible upon which are imposed sinusoidal peristaltic waves 
of finite amplitude traveling down its wall. The geometry of the wall surface of the 
tube is described (Fig. 1) as 
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                        H (z, t) = a + b sin 

2  (z - ct),                    (1) 

where b )aab(0 1  is the amplitude of the wave,  (  L, the length of the tube 
under consideration) is the wavelength, c is the wave propagation speed, t is the time 
and z is the axial coordinate.  

 The equations governing the linear momentum and the conservation of mass 
for both the fluid and particle phases using a continuum approach are expressed 
(Drew, 1979; Srivastava and Srivastava, 1997) as 
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where r is the radial coordinate measured in the direction normal to the tube axis,  
(u f , v f ) denotes the fluid phase and ( pp v,u ) denotes the particle phase velocity 

components along (z, r) directions, respectively; C be the volume fraction of 
particulate phase; pf and   be the actual densities of the material constituting fluid 

and particulate phases, respectively; (1-C) f  is the fluid phase density, C p the 

particulate phase density, p denotes the  pressure, s (C) s  is the mixture viscosity 

and S being the drag coefficient of interaction for the force exerted by one phase on 
the other. The concentration of the particles is assumed to be small enough so as to 
neglect the field interaction among them (Srivastava, 1996). The volume fraction 
density, C of the particles is chosen to be a constant which is a good approximation 
for the low concentration of small particles (Batchelor, 1974, 1976). 

 An empirical relation for the suspension viscosity, s  has been chosen for the 

present problem (Charm and Kurland, 1974; Srivastava and Srivastava, 1989) as 

  s  (C) = 
mC1
o




 ,                                                                  (8)    

where m=0.070 exp [2.49C+ (1107/T) exp (-1.69C)]; o  is the fluid viscosity 

(suspending medium) and T is the temperature of the mixture measured in absolute 
scale (K). The viscosity of the suspension expressed by this formula (eqn. (8)) is 
found to be reasonably accurate up to C=0.6 (i.e., 60% particle concentration; 
Srivastava and coworkers, 1989, 1996, 1997; Charm and Kurland, 1974). 

 The expression for the drag coefficient of interaction, S for the study is 
selected (Tam, 1969) as                     
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with ao as the radius of a particle. 

 Introducing the following dimensionless variables 
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where Re= f ca/ o  and  =a/  are Reynolds number and wave number, 

respectively. 

 Using the long wavelength approximation (i.e.,  <<1) of Shapiro et al. 
(1969), the equations describing the flow in the wave frame (moving with the speed, 
c) of reference, are obtained as 
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 The non-dimensional boundary conditions are 

  uf  = - 1   at    r = h = H/a = 1+  sin 2  z,  

  uf  = - 1   at    r = a1 /a = .     (18) 

 

 The expressions for the velocity profiles, uf and up, obtained as the solution of 
equations (16) and (17), subject to the boundary conditions (18), are given as 
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 The instantaneous non-dimensional volumetric flow rate, q (=q'/ ca2 ; q' 
being the flow rate in wave frame of reference which is same as in laboratory frame of 
reference), is thus calculated as 
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with  (z) = 22h  +   - ( )h 22  /ln (h/ ), and  = 8C(1-C) /S, a non-
dimensional suspension parameter. 

 Following the report of Shapiro et al. (1969), one now determines the mean 
volumetric flow rate, Q over one period of the wave, as  
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 An application of the relation (23) into equation (22), yields the expression for 
the non-dimensional pressure drop, ∆p =p (0) – p (1), across one wavelength (which 
is same whether measured in wave or laboratory frame of reference), is thus 
calculated as 
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The pressure-flow rate and friction force-flow rate relationships are 
thus obtained from equations (24)-(26) as  
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 The pressure rise (- p ) for zero time-mean flow and the time mean flow for 
zero pressure rise which are of particular interest are given as 
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 In the limit,  0 (i.e., in the absence of the inner tube), one derives the 
expressions for the pressure drop, p  and the friction force, Fo from equations (24) 
and (25) for the peristaltic induced flow of a particle-fluid mixture, as  

 p = 2(1-C)  21
2 LL/2)φ1Q(   ,           (32) 

  Fo = 2(1-C)  32
2 L/2)Lφ1Q(   ,           (33) 

  With    L1 = 4  

1

o
24 hh

dz
 ,            L2 = 4  

1

o
2h
dz

 , 

  L3 = 4  

1

o
2hβ/1

dz
  . 

 Further, in the absence of the inner tube (i.e., under the limit,  0) and 
particle phase (i.e., C=0), the integrals involved in equations (24) and (25) become 
integrable in the closed form which yields the results of Shapiro et al (1969) as  
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NUMERICAL RESULTS AND DISCUSSION 

To observe the effects of the various parameters involved, particularly, the 
particle concentration, C, the catheter size,   and the amplitude ratio,   on the  

results obtained above, computer codes are developed for the numerical evaluations of 
the analytical results derived in the study at a temperature of 25.5oC. The parameter 
values are chosen as:  a (tube radius) = 0.01 cm; C=0, 0.2, 0.4, and 0.6;   = 0, 0.2, 
0.4, 0.6, =0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6; ao (radius of a particle) = 8m and Q=0, 0.2, 
0.4, 0.6, 0.8, and 1.0. The results of the present study under the limit, 0 (in the 
absence of catheter), corresponds to the peristaltic flow of a particle-fluid mixture in 
circular cylindrical tube; C=0 (in the absence of particle phase), corresponds to the 
flow of a Newtonian viscous fluid through annular space of two circular tubes by 
means of peristaltic waves and  =0 (no peristalsis), corresponds to the flow of a 
particulate suspension in the annulus of two concentric circular cylindrical tubes. 
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 For any given set of parameters, a linear relationship between the flow and the 
pressure is observed (Fig.2). The pressure drop, p increases with flow rate, Q for 
other parameters given which in terns implies that an increase in the flow rate reduces 
the pressure rise (- p )  and thus the maximum flow rate is achieved at zero pressure 
rise and the maximum pressure occurs at zero flow rate. Pressure drop, p increases 
with the catheter size,  for any given flow rate, Q and the amplitude ratio,  . The 
flow characteristics, p increases with particle concentration, C for any given flow 
rate, Q in both the catheterized and uncatheterized tubes. (Fig.2). One observes that 
the pressure drop, p  decreases indefinitely with increasing amplitude ratio,  for 
any given set of other parameters (Fig.3). Pressure drop, p  assumes higher 
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magnitudes for larger flow rate, Q for small values of the amplitude ratio,  but the 
property reverses for large values of  (Fig. 3).For zero flow rate, the magnitude of 
the pressure drop, p  increases with the particle concentration, C for any given value 
of the catheter size,   and the amplitude ratio,  , however, for zero flow rate, 
pressure drop, p decreases with increasing particle concentration, C in both the 
catheterized and uncatheterized tubes (Fig.4).  
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In the absence of the peristaltic waves (i.e.,  =0), p  increases with the catheter 
size,   for any given particle concentration, C (Fig. 5). However, the flow 
characteristic, p  decreases with increasing catheter size,   for a given particle 
concentration C and non-zero values of the amplitude ratio,   (Fig.5).  
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The friction force at the tube wall, Fo increases with the flow rate, Q for any 
given values of C,  and    (Fig.6). For any given set of parameters, the flow 
characteristic, Fo decreases indefinitely with increasing amplitude ratio,   (Fig.7). 
Friction force, Fo increases with particle concentration, C for any given values of Q, 
  and    (Fig.8). The flow characteristic, Fo decreases with increasing catheter size, 
  for zero flow rate, Q (Fig.9), however, an inspection of Fig. 9 reveals that the 
variation in the magnitude of Fo possesses almost an opposite nature in the tube with 
peristaltic wave (  =0) and without peristaltic wave (  ≠ 0). 

0.0 0.2 0.4 0.6

-4

-2

0

2

4

6

8

10

12

14

Numbers (,)

  Q =0.0
  Q =0.2
  Q =0.4

  

(.2,.2)

(0,.2)

(0,.2)

(0,0)
(.2,.2)

(0,.2)
(0,0)
(.2,0)

(.2,.2)

(.2,0)

Fig.8 Variation of F
o
 with C for different Q,  and .

F
O

C

 



e-Περιοδικό Επιστήμης & Τεχνολογίας                                                                                      
e-Journal of Science & Technology (e-JST) 

 

                                           (1), 5 ,Jan 2010                                                                                            88 
 

88

 

          

 

 

 

 

 

 

 

 

 

 

  

0.0 0.2 0.4 0.6 0.8 1.0

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0
.4

0

.4

.4

.4





Fig.10 Variation of F with Q for different C,  and .

   =0.0
   =0.2

  Numbers C

F
i

Q

 

One observes that the friction force at the catheter wall, Fi too increases with 
the flow rate, Q (Fig.10). The flow characteristic, Fi decreases indefinitely with the 
increasing amplitude ratio,  (Fig.11). For zero flow rate (i.e. Q=0), the friction force, 
Fi decreases with increasing particle concentration, C but increases with C for any 
non-zero flow rate, Q for any given values of catheter size,  and amplitude 
ratio,  (Fig.12). Friction force at the catheter wall, Fi decreases indefinitely with 
increasing catheter size,  (Fig.13). 

         A comparison of the numerical results obtained for the pressure drop, p  and 
the friction force at the tube wall, Fo reveals that the later possesses the characteristics 
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similar to the farmer with respect to any parameter (Figs. 2-9). One further notices 
that the magnitude of the friction force at the tube wall, Fo is much higher than the 
corresponding magnitude of the friction force at the catheter wall, Fi (Fig. 6-13). 
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CONCLUSIONS 

 To observe the effects of particle concentration and the amplitude ratio on 
flow behavior in a catheterized tube, the flow of a particle-fluid mixture in 
catheterized tube induced by peristaltic waves has been discussed. In view of the 
theoretical model used to conduct the study, it is obvious that the volume fraction 
density of the particle dominates the suspension property and therefore plays vital role 
in determination of the flow field, consequently a study based on particle 
concentration could be of practical use (Srivastava, 1996, 2007b). The informations 
that the pressure drop increases with the particle concentration for a given catheter 
size and amplitude ratio  and also with the catheter size for any given particle 
concentration and the amplitude ratio seem to be of particular interest. Friction force 
at the tube wall assumes significantly higher magnitude than the corresponding 
friction force at the catheter wall which may be noted as another important result. The 
study enables one to observe the simultaneous effects of the particle concentration and 
the catheter size on peristaltic flow in a circular tube, seems to be the only one of its 
kind in the literature. In view of the theoretical model used to address the problem, it 
is believed that the present investigation may be applied to discuss the peristaltic 
pumping of blood through narrow catheterized arteries. 
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