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ABSTRACT 

 

In this work we present a technique for examining human skin, based on the in vivo measurement of 

diffuse reflectance spectra in the visible and near-infrared ranges of the electromagnetic spectrum for 

non-invasive characterisation of haemoglobin oxygenation and pigmentation in skin. Spectra were 

measured by means of a fiber optic probe, and they were analyzed using an analytical model, based on 

the Kubelka–Munk theory of scattering and absorption within inhomogeneous materials. To evaluate 

the utility of the model, skin sites with variable melanin content were studied on individuals with 

different skin types or with pathological skin conditions. The results of the analysis indicated that it is 

possible to obtain quantitative information about main skin pigments, as well as basic information 

regarding the scattering properties of the skin. In addition to quantification of haemoglobin and 

melanin, qualitative information on the redox state of the blood may also be obtained. The proposed 

analytical model could be a helpful tool to monitor and evaluate the variations in the biological skin 

tissue data and its medical conditions. 

 

Keywords:  Reflectance model, hemoglobin, melanin, optical properties, reflectance, scattering, 

absorbance, hemoglobin oxygenation 

 

I�TRODUCTIO� 

 

 A. THEORETICAL CO�SIDERATIO�S 

 

The basis of spectrophotometry is Lambert–Beer’s law, where the total light absorption from a solution 

with more than one substance equals the sum of absorption from each of the substances, and is 

proportional to the light path. This applies to light transmission in a solution with no scattering, and a 

known light path. However, reflectance spectrophotometry in tissues is based on scattering and the 

light path is unknown. Twersky (1962, 1970a, 1970b) originally formulated the basic theory of light 

scattering in tissues, which is quite complicated for practical use. Essentially, it divides the optical 

properties of tissues into an absorbing compound due to the substance to be measured, and a scattering 

compound due to the media (Pittman and Duling 1975a, Steinke and Shepherd 1986). Simplifying, the 

optical density (OD) of tissues can be expressed as (Zourabian A et al 2000, Leung TS et al 2006). 

 

                                    OD= GLBCi

i

i +∑ε                                                            (1) 

όπου Β is a compound scatter factor, which depends on wavelength, haematocrit, optical path length 

and properties of the scattering media such as particle concentration, size, shape and orientation,G is a 

geometrical measurements factor, L is the distance between detector and light source (here 400 µm), 

ενώ i is the chomophore, εi is the molar extinction coefficient for chromophores at λ.  

Optical density can represent the attenuation of light into a tissue, and from many authors can be 

expressed with the negative logarithm of tissue reflectance (Delpy DT et al 1988, Jacques SL et al 

1997, Kim JG et al 2005, Drakaki E, et al 2006).  

If we have any change in any chromophore I (e.g. hemoglobin, water, melanin, birilubin, β-carotene), a 

spectral change in the measured reflectance can occur. Then, while the εi and L remain constant, the 
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factors B and G are assumed to be constant. We therefore find that the change in optical density (Eq.1) 

is given by the equation (2) (Zourabian A et al 2000): 

 

∆OD (λ)= - Log(Rτελ/Rαρχ)= ( ) ⇒∗∗∆∗∑ BLCi

i

iε  

                                     ∆OD (λ)= ( ) )(][)(][)(
22

λλελε BLCC HbHbHbOHbO ∗∆+∆                       (2) 

From the equation (2) we could evaluate relatively the change in the concentration of oxy-hemoglobin.  

 The oxygen saturation is defined by the ratio between oxy-haemoglobin and total 

haemoglobin. The oxygen saturation SpO2 is generally defined by the ratio between densities of oxy-

haemoglobin and total haemoglobin as follows: 
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where CHbO2 and CHb indicate the concentrations of deoxy-hemoglobin and oxyhemoglobin respectively 

(Zonios G et al 2001). The equation (3) about the haemoglobin saturation in oxygen is often expressed 

as ratio per cent as follows: 
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The oxygen saturation 0.97 ~ 0.98 is normal in the arterial blood, about 0.70 is normal in venous blood. 

 

 By taking the ratio K of the changes in optical density measured at two different wavelengths 

(Eq.2) we get the following expression: 
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By solving for haemoglobin oxygen saturation SpO2 we obtain the following final expression: 
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The B factor can be estimated by solving the photon diffusion equation (Schmitt J M 1991, Marble DR, 

et al 1994, Haskell RC et al 1994) for the appropriate measurement geometry (Zourabian A et al 2000). 

 

We could, during the variation of oxygenation of hemoglobin, find the concentration of oxy-

hemoglobin from the equation (2), after some mathematical operations. 
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 B. SKI� REFLECTA�CE MODEL  

 

We calculated a theoretical model of skin reflectance model, taking into account the different optical 

behavior, due to different color, sex, chromophore concentration or skin healthy condition. 

For this research, we relied on previous research that Poirier G 2003, Takanori Igarashi et al 2005, Doi 

M et al 2003, Cerussi AE 1999, Störring Moritz 2004 had been done.  

 

This skin model contains set of the different skin layers with varied chromophore concentration and 

skin layer thickness at papillary dermis, at superficial horizontial plexus and at Reticular Dermis, The 

basic scheme is shown at figure 1.  
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 Epidermis-absorption(scattering)

Papillary dermis-scattering(absorption)

Dermis with plexus superficialis -absorption(scattering)

Reticular dermis- scattering(absorption)

 
Figure 1. Schematic design of skin tissue 

 

The model is based on the Kubelka Munk (KM) theory (Kubelka P et al 1931, Kubelka P 1948, 

Kubelka P 1954, Ishimaru A 1978-p.191, Doi M et al 2003, Shakespeare T et al 2004, Störring M 

2004,  Takanori Igarashi etal 2005). For one skin layer the reflectance and transmittance coefficient are 

given from the equation of the KM theory: 
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where )( sK µµµ αα += , 

sµµ
µ

β
α

α

+
= , µα and µs are resulted from Lambert- Beer’s law, 

Mie-Rayleigh theory respectively. 

If we had two skin layers of known reflectivity and transmittance R1, R2, T1 and T2, according all he 

possible optical interactions we have an infinitive sum (figure 2). 

  

 
 

 

 

 

 

 

 

 

 

 

 

Figure 2. Optical interactions representation between two tissue layers 

 

                                                   R12=R1+T1R2T1+T1R2R1R2T1+…                                                       (3) 

                                                   T12=T1T2+T2R1R2T1+…                                                                     (4) 

 

which could be simplified into 
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Thus, reflectance and transmittance for n layers could be calculate accordingly (Claridge E etal 2003, 

Störring Moritz 2004, Takanori Igarashi et al 2005, Doi M et al 2003) 
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After further analysis for four skin layers from the above equations, we have: 
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METHODOLOGY A�D SAMPLE 

 

A. EXPERIME�TAL SET-UP 

 

Reflectance measurements were performed with skin illumination by a tungsten halogen source (HL-

2000, Avantes). The excitation light was transmitted into bifurcated fiber optics bundle (QR200-7-

UV/VIS-BX, Ocean Optics and FCΒ-UV400-2, Avantes), which also helped to collect the diffuse 

reflectance spectra from the experimented skin area. The reflectance spectra were then detected as a 

function of time, before, during, and after occlusion and analyzed by a spectrometer (Model S2000 and 

HR2000, Ocean Optics)  and the software OOIIrrad-C and OOIBase32 (Ocean Optics).  The 

experimental set up is shown in figure 3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Experimental setup for diffuse reflectance measurements of skin samples. 

 

 

B. HUMA� SKI� SAMPLES 

 

Several volunteers from our undergraduate laboratories were supposed to diffused reflectance 

spectroscopy of their skin. Five to seven points from several hand places were examined for each 

volunteer, according to the anatomic area, the oxygenation condition and the skin phototype. The skin 

phototypes were defined according to the classifications that based on Fitzpatrick’s sun-reactive skin 

types. 

 

RESULTS A�D DISCUSSIO� 

 

 A. PIGME�TATIO� 

 

Increased concentration in melanin enhances the absorption of human skin tissue. According the Beer –

Lambert law the optical density OD is related to the diffuse reflectance spectra with the equation 

below: OD= - Log [Rd] and connect absorbance of skin pigmentation with the growth of melanocytes 

(Figs. 4, 5). 

Quantification of melanin pigment could be determined by the Melanin index M, with the equation  

Μ= κ ·(ODλ1-ODλ2)/(λ1-λ2) , where k calibration coefficient, ODλ1 και ODλ2 the optical densities at 

λ1 and λ2 respectively. We choose λ1:365 nm and λ2:395 nm, because of the high melanin absorbance. 

From the figure 6 we can see the linear dependence of Melanin Index M, with the estimated 

percentage of melanin at the skin tissue under investigation (Fig. 6). 

 

 

 

Tungsten halogen source
 (HL-2000, Avantes). 
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Figure 4. Diffuse reflectance spectra by two different 

prototypes. In the insert graph, the melanin absorbance 

spectrum. 

Figure 5. Optical density spectra by three different skin 

phototypes. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 6. Gradient of optical density of different prototypes versus percentage of melanocytes. 

 

 B. OXYGE�ATIO� 

 

 The first large absorption spectral area of 100% oxyhemoglobin (Soret band) appears at 415 

nm and secondary spectral areas at ~542 nm and ~577 nm. The non oxygenated haemoglobin 

absorption spectra is totally different, with the Soret band being red at 431 nm, with the bands α and β 

grouped at 555 nm and a secondary absorption peak at 760 nm. The absorption of non-oxygenated 

haemoglobin is higher at 640 nm and 670 nm, while oxygenated haemoglobin appears to absorb less 

after 620 nm. It is known that the absorption of hemoglobin is related to its saturation with the oxygen.  

 During hypoxia the peaks of 542 nm and 577 nm are being disappeared (characteristic 

absorption peaks of oxygenated hemoglobin), with a overall decrease of the reflectance intensity, 

especially after λ>600 nm, spectral area of the non oxygenated hemoglobin (Fig. 7). After the effect of 

hypoxia, there is an intense increase of oxy-hemoglobin and an inverse behavior at non oxygenated 

hemoglobin (at 80s, 84s και 85s), until both blood components return to their physiological levels. 

At figure 6 from the normalized reflectance spectra versus wavelength we can see clearly the transition 

from oxy-hemoglobin to non-oxygenated hemoglobin at their characteristic spectral absorption peaks 

(Sianoudis JA et al 2005).  

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Skin Reflectance (%) versus time before (t=0 

s),during (at 55s, 57s, 60s and 67s) and after hypoxia (at 

80s, 84s και 85s), with relaxation of the incident pressure. 

Figure 8. Normalized skin Reflectance (%) versus 

time before (t=0 s),during (at 55s, 57s, 60s and 67s) 

and after hypoxia (at 80s, 84s και 85s), with 

relaxation of the incident pressure. 
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 The rate of change and other biological remarks can not been discriminate at the figs.7, 8 and 

for that reason the ratio of optical density at λ1: 544 nm to λ2: 560 nm versus the ratio of optical 

density at λ3: 577 nm to λ4: 586 nm at fig. 9, help us to resolve oxygenated and not oxygenated skin 

tissue conditions. Those spectral points were chosen accordingly, since HbO2, and Hb exhibit equal 

absorption values. From the figure 9 we can notice that the non-oxygenated skin tissues can be grouped 

(exp. points at the up right corner, with the sign “no”), from the rest skin tissues, where the 

concentration of oxy-hemoglobin is in physiological levels (exp. points with the sign “o”). This 

spectral characteristic can be used for the modeling pathological tissue conditions, where the oxygen 

saturation is one of their indications (e.g. cancerous skin tissues).  
 

 The choices of the appropriate wavelengths under investigation were those where there is no 

melanin, hemoglobin and water absorption. At the figure 10 we can see the normalized gradient of 

oxygen at λ1= 675 nm and λ2=700 nm versus time before (t=0 s), during (at 55s, 57s, 60s and 67s) and 

after hypoxia (at 80s, 84s και 85s), with relaxation of the incident pressure. 

 

 

 

  

 

 

 

 

 

 

 

 

 
Figure 9. Ratio of optical density at λ1: 544nm to λ2: 

560 nm versus the ratio of optical density at λ3: 577 nm 

to λ4: 586 nm, for discrimination of oxygenated and not 

oxygenated skin tissue conditions. 

Figure 10. Normalized gradient of oxygen versus time 

before (t=0 s),during (at 55s, 57s, 60s and 67s) and 

after hypoxia (at 80s, 84s και 85s), with relaxation of 

the incident pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Gradient of oxygenated hemoglobin versus time before (t=0 s),during (at 55s, 57s, 60s and 67s) and 

after hypoxia (at 80s, 84s και 85s), with relaxation of the incident pressure.  

 

 At the figure 10 the change in oxygen saturation during the experiment of occlusion is shown, 

while at the figure 5b the change of concentration of oxygenated hemoglobin can be seen. We can 

notice the slow transition of the oxygenated hemoglobin to the deoxy-hemoglobin, when after the 

release of the occlusion; a faster transition is occurred, with a trend to return to physiological levels.  At 

the figure 11 we can see the slower change rate of concentration of oxygenated hemoglobin, due the 

remained small percent of that kind of hemoglobin during the occlusion. 

 

 At the figure 12, we have various concentrations of melanin from 1% to 20%. We noticed a 

reduction of the reflectance intensity, especially at the lower wavelengths and almost erasure of the 

spectral characteristics of oxygenated hemoglobin, as we similarly noticed at the experimental results 

at figure 4. At the figure 13, we have varied the thickness of epidermis from 10 µm till 200 µm, and we 

noticed an attenuation of the total reflectance intensity, since more of the incident irradiation is being 

absorbed form the melanin. Furthermore less irradiation is reaching the dermis with plexus 

superificialis net, and the characteristic spectral pattern W of oxygenated hemoglobin is being less 

discernible for thicker layers of epidermis. 
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Figure 12. Reflectance of skin tissue at various melanin 

concentrations. 

 

Figure 13. Reflectance of skin tissue with 6% melanin 

concentration at various epidermis thickness (10µm-

200µm).  

 

 

 

 

 

 

 

 

 

 

 
Figure 14. .Reflectance of skin tissue with 6% melanin 

concentration at various hemoglobin concentrations (cHb 

=0.01-…-0.6) at the dermis-plexus superficialis layer.  

Figure 16. Reflectance of skin tissue with 6% 

melanin concentration at various oxygen 

concentrations at the dermis-plexus superficialis 

layer. 

 

At the figure 14, we increased the percentage of the hemoglobin into the blood (f =0.01-…-0.6) at the 

plexus superficialis net layer at dermis. We noticed a reduction of reflectance at eh spectral area  450 

nm -550 nm, with the characteristic pattern W, to be more profound and giving to the skin a reddish 

appearance. At the figure 15 various concentration of oxygen Ο into blood (Ο =0.001-…-0.8) at the 

plexus superficialis net layer at dermis introduced a slight variation at the reflectance spectra, with 

more intense absence of the W spectral characteristic of hemoglobin at the spectra area near 550 nm. 

At the figure 16 we have variation of the thickness of the reticular dermis from 900 µm till 2000 µm. 

We noticed an increase in reflectance intensity, especially at the longer wavelengths, due to the Mie 

scattering.   

 

Comparing experimental and theoretical results we observed similar spectral and optical behavior (fig. 

17). Nevertheless, there are some slight declinations, due to the uncertainty and the variability of the 

melanin and hemoglobin concentration in our experiments and due to the influence of the spectral 

dependence of the lamp irradiation that was used for the diffuse reflectance experiments. 
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Figure 16. Reflectance of skin tissue with 6% 

melanin concentration at various thicknesses of 

reticular dermis (900 µm-2000 µm).  

Figure 17. Comparison of simulated reflectance 

spectra with 4% melanin concentration with a 

measured reflectance spectra of a light skin 

person. 
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CO�CLUSIO� 

 

In this work we presented a technique for examining human skin, based on the in vivo measurement of 

diffuse reflectance spectra in the visible and near-infrared ranges of the electromagnetic spectrum for 

non-invasive characterisation of haemoglobin oxygenation and pigmentation in skin.  

 

In our research we studied the influence of chromophores inside skin samples at the reflectance spectra. 

The inhomogeneous distribution and the different concentration of melanin and oxygenated and non -

oxygenated hemoglobin were being related qualitative and quantitative with the diffuse reflectance 

spectra. 

 

A theoretical model of diffuse reflectance spectra was developed thought spectroscopic data and the 

help of Kubelka Munk theory.That proposed analytical model could be a helpful tool to monitor and 

evaluate the variations in the biological skin tissue data and its medical conditions. 

 

A big number of biomedical applications in diagnosis of pathological skin tissue with direct and non-

invansive analysis (e.g. hypermelanosis, malignant tumors, hemangiamas, hematomas, skin 

inflammations etc) can be advanced and benefit. However as far as concern the big skin case variation 

more statistical study and interpretation must to be made. 
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