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APPROXIMATION OF ALMOST LIPu FUNCTION
BY K'-SUMMABILITY METHOD

Shyam lal and Ramashray Singh Yadav
Department of Mathematics. Faculty of Science.
Banaras Hindu University, Varanasi.

Abstract: A new theorem on the approximation of almost Lipa function by K*—
summability method of Fourier series.

LINTRODUCTION

In 1935, first time., Karamata [5] introduced K" - summability method. In
1963. special case for A=1 of this method has been reintroduced by Lotosky
[8].Further studies of this and similar methods took place due to confribution of
Agnew [1] on evalution of series. Vuckovic [14] studie Fourier series by Karamata
method {K}'). Karthal [4] extended Vuckovié result. Working in the same direction
Ojha [9]. Tripathi & Lal [13]. Lal [17] Lal & Pratap [6] have generalised Katahal’s
result on K* -summability of Fourier series under general conditions. The degree of
approximation by Cesaro mean and Noérlund means of a function f€ Lipa has been
determined by number of researches like Alexits [2]. Sahney & Goel [12]. Chandra
[3]. Qureshi [10]. Qureshi & Nema [11]. But till now nothing seems to have been
done for the degree of approximation of a function belonging to almost Lipschitz
class. denoted by Li‘pa. by K" —summability means. Almost Lipe class is a
generalization of Lipo class. The purpose of this paper is to determine the

approximation of almost Lipschitz function by Karamata (k") method.
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2. DEFINITION AND NOTATION
=
Let0<o<1andletf: R — R be almost Lipschitz of order @. f € Lip g, in the sense
that there is a constant M = M;>0. and for each x €R there is a subset A,C [o.”/ 2] of measure

zero. such that t € (D,g) /A, implies.
[f(x+21) — f(x)| < M t*

Now. we assume further that the Li°p « function f is 21 — periodic on R and Lebesgue
integrable on (-m.m). Then its Fourier series is given by

%au + ¥ 5-4(a, cos nx + b,, sin nx) (2.1)

Where

1 n
a, = —f f(u) cosnu du
L

b, = i_]'_nnf(u) sin nu du (m=1.2.3.......)

The degree of approximation of a function f: R —R by a trigonometric polynomial T, of
order n is defined by [Zygmund(15)].

It — flle = Sup {| ta(x)-f(x) |:xER} (2.2)
Let us define. forn=0.1.2.3 ......, the number l:;l 0=m<=n, by
n
XD (XF2) e (x+n-1) = Y=o [m] x™.
I'(x+N _ n
D - A+ v) = o] x” @3)

The numbers [m] are known absolute values of Stirling numbers of the first kind.

Let {S,} be the sequence of partial sums of partial sums of an infinite series Y a,, and let
us write.

- T n -

to denote the n™ K*- mean of order 2 >0, if s} - S asn > », where S is a fixed finite
quantity. then the sequence {S,} of the series } a, is said to be summable by Karamata

method K" order 4 = 0. to the sum S and we can write.

s;} —)S(K‘l) as n — w
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We use following notations:

@(t) = fix+2t) + fix-21) -2f(x). (2.5)
. I E:uul:,:]l’“sln{zm+ 13t
hn{t) B ? I'{k+n)sint
(2.6)
3. MAIN THEOREM

Quite good amount of works are known the degree of approximation of a function
f€ Lip a of Fourier series by Cesaro and Nérlund summability means. The purpose of this
paper is to determine the approximation of almost Lipschitz function by K* —summability
method in the following form.

Theorem: If f :R — R is 27 periodic. Lebesgue integrable on (-m.n) and is almost Li*pa.
f € Lip then the approximation of a function f by K* —means

b= I'l:.::ﬂ} ;'“[:t] A™S,, of Fourier series (2.1) satisfies
¥l - log (n+1)e 1 .
lls? = £1l., = o e + i) forn=0,1.2.3......
4. LEMMA

For the proof of our theorem following lemma is required
Lemma. (Vuékovié 1965 ) Let A>0 and ﬂ*:tfig.

Then

{ Iml (et +n) _I5in[?.lug{n+1}_]s1n2tl+ D(l:l.

I'(acos2r+n) sint sint
as i — o umformly m t.
5. PROOF OF THE THEOREM

The m™ parital sum of the Fourier series (2.1) at the point t =x is given by

Sm—f(x) = = [ /2 ”“Ef;“l“’cp(t)dt (5.1)
Then
['{-11"] m= "[m] A Sm = f (x]"Ju fzu‘:in; Lm=0 [:1 MW) P(t)dt

13 n 1k .I'r
o Taem m=0 [m A" Sm = I(A+n) m=0 [m] ATi(x) = -[u. *Ka(tp()dt
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sA—f(x) = [7Ka() d(dt by (26)

IR RCIICREY

1 o
S SRR LICTECTE

1 T
=0, " 1K) 11 6 1 + 72 1Kn®) 11 40 | d]
=11+Ig [:‘32)
Now,

Th 221_.;,[:1]1”" sin(2m+1))t

n - T I'{i+n)sint

n i
E&:u[mlljrtcll‘lm+ljl
I'(k4n) sint

= Imaginary part of{

I ; it
E%«;:u ame2imt+e’)
Ip |_"?| .
I'(A+n)sint

[}:}:Fu[f;]{mm]me“}
Ip

[(h4n)sint

r(ieiten)
I r';\ezil
P ) T+n)sint

. T(re?t4n)
_ {cost+isint) eZit

I{A+n)sint

N 1&2“411 . :{;_32'11'4_”]
cos H;,W+mn t Real part ”fw

(A4n)sint

—0 [fp{['(}.cmm)]] ) [Realpartnf{r{;.ez'lt+nj]]

I'{A+n)sint I'(A+n)

IAcos2t+n) Iy {l l:le?'jt+n)}

Kn(f] — o IiA+n) + G [

I'(A cos2t+n)

I'(Acos2t +n}]
I(A+m)

For 0= t<

(n+1)
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I'(Acos2t+n) _ [ _1(1—cc:s¢zsz
[{A+mn) =0]n

a(26)%log(n+1)
=0|e = J
zole—zit?‘ ]ng[n+[}]

Since for. 0< t‘fi; ,0<1—1cos2t < 2¢t?
n+1l

therefore.

=M IR | (1 (36214 )]

Kﬂ'[t) =0 [ IMAcos2t+n) sint

} + 018—21:2 Il'gglf:l".l-l-'l:l]J forQ <t < 1
n+l

sint

=0 [E—thz log(n+1) {Hﬁin t[Mog(n+1)sin 2t]}|} + 0(1)] + G[e_z;_tz |0g{n+1]]

by Lemma 4

—24t% log(n+1) 3412
[w{l{sint [Alog(n + 1) sin 2:]}|}] + O[e‘z'u l”gf““:'} +

0 [e—zltz login+ 1]]

sint

= O|g—2ﬂ.r2 log(n+ 1) (20log (n + 1| + Ole_“‘z log(n 1) |
= O[e—zﬂ.ri Iog(n+1]l:]og (n+ ,1)1"
Knty = 0(log(n + 1)e) (s e—24t7 logn+1)) < 1 (5.3)

and

1 1
Ku = Ofgomm), for mm<t<] (54)

(n+1)4t
Also |f(x +2t) — f(x)| < Mt* since f € T a
Then
lb(O] = [fx+26) + f(x—2t) — 2f ()]
< |fle+20—f0) + fx—20)— f(x)
= Mt* + Mt

= 2Mt*

o(t")
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a
Thus ¢ € Lipg

Now

L= K@) [0 de

0(log(n + 1)e) [, ™ Vlp(o) e

1
= 0(Alog(n+1e) [, fne) 2Mt* dt

I(r: 1)
a

= 0(Alog(n + 1]e)zM[

[ZMA(MU,{;(M+1]E:I
(a+1)(n+1)o*2

_ log (n+1)e
h =0 [ (n+1)@+1 ]

(5.6)

Next,

L = [4% K. (0) lp(D)]dt

n1

L

7 1
= Iﬁmm(mdt, by (5.4)

T

_ 1 7 et
- D((nﬂ]l)jz t dt

n+1i

- o({nml) [3 2Mt'dt, by (5.5)

n+1i

™

= 0 (gm) [

n+1

[Hz}“_ 1 ]

a(n+11%

n+1‘,|1)

(

oL () Gl + o B e
< 0(mm) + 0(Gmm)

G5+ 0 ()

I, =0 ((n;],-,) (5.7)
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Collecting (5.2). (5.6) and (5.7). we have

A - [login+1de 1]
|5n f(‘r}l ﬂ[(n+1}“*‘+{ﬂ+1]1|

= Sup {[si(x) - f(0)]}

Hence

It~ ol = o 1t ]

= Yl T mand]

This completes the Proof of the theorem.

Remark: Fesult similar to the main theorem may be obtained for a functions f€Lipa.
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