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Abstract 

A three layer model consisting of a core and a region of suspension of the erythrocytes 

in plasma (fluid) of viscosity  c101    and a peripheral layer of cell free plasma 

layer has been proposed in this paper to represent blood flow in small capillary and 

compared with the two fluid model (Casson fluid model) and particle fluid mixture 

model of V. P. Srivastava. For three layer as well as casson fluid model equation of 

motion and equation of continuity for different regions are solved using analytical 

methods. The analytical results obtained in the proposed model for effective viscosity, 

velocity profile and flow rate for different values of hematocrit has been presented and 

discussed. Results are similar to those obtained by Particle fluid mixture of 

V.P.srivastava.  

 
Introduction 

Blood is essential to maintain life. It transports oxygen and nutrients to all parts of the 

body, relays chemical signals and moves metabolic waste to the kidneys for elimination. 

Yet despite more than 150 years of close study, a concise, predictive model of blood 

flow is still lacking. A quantitative model of blood flow is important not only as it 

relates to clinical diagnosis of disease, but as an integral component of models of more 

complex structures like the brain. Further, proper design of artificial organs demands a 

thorough understanding of blood rheology in order to avoid flow stagnation and clot 

formation. 

The study of blood flow through microcirculation is the subject of scientific research 

about a couple of centuries. Blood from mechanical point of view can be considered as 

a neutrally buoyant suspension of erythrocytes in a Newtonian liquid called plasma. 

The two phase nature of blood as a suspension becomes important as the diameter of 

tube decreases. When the diameter of the tube is less than 500 m the dimension of 

RBC are no longer negligible as compared to the tube size. The blood flow in these 

tubes has to be treated as two phase fluid. Since blood is a suspension of red cells in 

plasma, it behaves as a non Newtonian fluid at low shear rate and the yield stress is non 

zero at that stage. 

 

Several researchers [Casson 1959, Hayness1959, Charm and Kurland 1964, Eringen 

1964, Gupta et.al. 1982, Chaturani and Upadhyay 1984] have worked for blood flow in 

small blood vessels But some investigator Haynes and Burton (1959), Merill et.al. 

(1963). Charm and Kurland (1965) Hurshey et.al. (1964). Cokelet (1972) and Lih 

(1975) noticed that blood being a suspension of corpuscles, behave like a non 

Newtonian fluid at low shear rates. Bugliarello and Sevilla (1970). Cokelet (1972) and 

Thurston 1989 have shown experimentally that for blood flowing through small vessels 

there is a cell free plasma layer and a core region of suspension of all the erythrocytes. 

Haynes (1960) presented a two fluid theoretical model for blood flow consisting of a 

core region consisting of all the erythrocytes as a homogeneous Newtonian viscous 

fluid and a cell free plasma layer as a Newtonian fluid of constant viscosity. Viscosity 
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is not a relevant property of blood when blood flow in capillaries is being studied. Blood 

does not flow as a homogeneous suspension in capillaries as it does in larger vessels; 

rather, it flows as a two phase system cells and plasma. Bugliarello and Sevilla (1970) 

presented blood in small diameter tubes by a two layered model assuming peripheral 

and core fluids as Newtonian fluids of different viscosities. Chaturani and Upadhyay 

considered the blood flow in small diameter tubes including the two layered model of 

micropolar and couple stress fluids. Wang and Bassingthwainghte (2003) presented a 

two layered model of Haynes (1960) and Sharan and Popel (2001) to discuss the flow 

of blood in narrow curvewd tubes. Gupta et al has been developed a three layer 

mathematical model and tested for calculating the velocity profile and wall layer 

thickness for the flow of blood  and other particulate suspension in narrow tubes. 

Chaturani and Biswas have been considered three layered model includes Coutte flow 

of blood.  

A few mathematical models which regard the blood in microvessels as a two component 

fluids have already been proposed. We present here a new mathematical model of the 

blood flow in microvessels. The model consists of plug region which is  surrounded by 

suspension of red cells in plasma and cell free peripheral plasma layer. The viscosity of 

the suspension is considered to be depend on concentration of red cells i.e. 

 c101 


 where  0  is the viscosity of plasma,  is the concentration coefficient. 

The result of the three layer model has been considerable with the two layer fluid model 

and particle fluid mixture model of V.P. Srivastava.  

 

Formulation of the Problem 

As described above we are presenting here two different models three layer model and 

casson fluid model.  

 
Three layer model 

The basic functional unit considered here includes a cylindrical capillary of radius R2 
and length  . Blood is represented by a three layer model consisting of a core layer of 

all erythrocytes, central layer of suspension of red cell in plasma and peripheral layer 

of plasma In second case blood is represented as casson fluid model. 

                 
A realistic model of the basic function unit should specifically consider the slow viscous 

flow in narrow capillary therefore the viscosity 
1 of the blood is considered as 
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depending on the local variation of the concentration as given by the relation 

 c101 


  

The Concentration c   of the suspended cells in the blood is determined by one 

dimensional diffusion equation. 
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Where D  and m are the diffusion coefficient of undisolved cells and rate of production 

of cells respectively. 

 

(i) For Peripheral layer region: Equation of motion for peripheral layer is given 

as   
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       here 0  is the viscosity of plasma, 0u  is axial velocity of plasma in the region    

                                                                                

(ii) For Central region:  Equation of motion for the central region is given as   
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Where  c101 


  

here 


1  is the viscosity of central layer which is depend on the viscosity of 

plasma and concentration of red blood cell, 1u  is axial velocity of blood in the 

central region 

 
(iii)        For Core layer: Equation of motion for the core region is given as 
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Here 
cu is the velocity of core layer. 

 

Casson Fluid 

 

(i)    For Peripheral layer region: Equation of motion and equation of continuity for 

peripheral region are given as 
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Here 0u  and 0v  are the axial and normal velocities of plasma in peripheral layer and 

0  is the viscosity of plasma. 

 

(ii)       For central region 
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Where 1  is stress in central region. 0  is constant yield stress in the core region. 
r

u1




 

is the rate of strain of the casson fluid. 1 denotes casson’s viscosity. These relations 

corresponds to vanishing of velocity gradients in the region where the shear stress 1  

is less than yield stress 0 . This implies    

 

Considering the forces on the control volume and equating the shear forces and pressure 

forces acting on the control volume 
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Dividing by r  and taking the limit as 0r  , we get 
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which on integration leads to  
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The constant A is determined by the condition that 1 is finite at 0r   

and we get  
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Where 
x


  is the pressure gradient of the flow in capillary. 

again putting hrr   ,     01    we get 
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(iii)        For Core layer: Equation of motion for the core region is given as 
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Here 
cu is the velocity of core layer. 

 

Boundary and Matching conditions: The flow is subject to the following boundary 

conditions: 
 

(i) No slip condition is assumed at the wall  
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(ii) The velocity and shear stress are continuous at the interphase of plasma      

(Peripheral layer) and central layer. 
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(iii) Due to symmetry the velocity gradient  vanishes along the axis of the tube  
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(iv) The concentration of red cell in maximum at the centre line and zero at the wall. 
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Where   and
0bu  are the density and velocity of the blood and 0c is some reference 

concentration of solute. 

 

Solution of the Problem 

Three layer model 
 

The expression for the velocities for different layers obtained as the solution of 

governing equation (1) , (2) and (3) are subject to the boundary condition.  
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The volumetric flow rate is now calculated as  
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Evaluating the integral of  (20) we get the flow rate in different regions are given as 
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Casson Fluid Model 

 

The expression for the velocities in different layers when the central layer is defined as 

casson fluid. The solution for the velocity in different regions are given by equation no. 

(24), (25) and (26).       
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The volumetric rate for this case is calculated as  

 

c10 QQQQ   
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Solving the integral of equation no. (27) volumetric flow rate for the different regions 

are given as 
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Results & Discussion 

 
The graphs between flow rate and pressure gradient has been shown in the figures 2 & 

3. It is clear from the figure that pattern is same as those for model of V.P. Srivastava 

and casson fluid model. It has been concluded that present model suitable describes 

blood flow in small vessels at low concentration of red cells. The results of the analysis  
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deviate from the experimental works with increasing diameter of blood vessels and also 

with increasing hematocrit. The reason behined this is the empirical formula used for 

the viscosity is based on the Einstein’s theory of particulate suspension and is therefore 

applicable only for low particle concentration. 

 

 
Fig.2 variation of flow rate with Pressure gradient for concentration 

coefficient                                   

 
Fig. 3 variation of flow rate with Pressure gradient for concentration 

coefficient 1.5 
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Fig. 4 velocity distribution with diameter for concentration coefficient 0.5     

 
Fig. 5 velocity distribution with diameter for concentration coefficient 1.5       

 

 
The axial velocity Profile for the present model has been compared with the results of 

model of V. P. Srivastava (2007) (using erythrocytes-plasma suspension to represent 

blood in the core region) and casson fluid model. These graphs are shown in figure 

4&5. We have observed that velocity at the tube axis is more than plasma velocity in 

peripheral layer. The difference in the magnitude decreases with increasing radial 

http://e-jst.teiath.gr/


e-Περιοδικό Επιστήμης & Τεχνολογίας                                                                                      
e-Journal of Science & Technology (e-JST) 

 

                            11 (1), 2016                                                                                                                  130 

coordinate. The plasma velocity coincides with the blood velocity at the interface. Our 

results are similar to those obtained by V. P. Srivastava. 

 

Conclusions 

 

A three layer model for the blood flow and casson fluid model has been considered and 

compared with the particle fluid mixture model of V.P. Srivastava (2007). The velocity 

profile and flow rate has been obtained and discussed through graph. 

It has been concluded that blood in narrow tube can be modeled by a three layer model 

of fluid as the result for flow rate and velocity profile shows similar variation of those 

obtained by V. P. Srivastava(2007) and casson fluid model. 
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