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Abstract 

This paper deals with the pulsatile flow of blood through a stenosed artery with the 

effect of body acceleration. We have considered the axially non-symmetric mild 

stenosis & a two layered blood flow with a core region of suspension of all erythrocytes 

assumed to be a Casson fluid and a peripheral layer of plasma free from cells as a 

Newtonian fluid. The non-linear differential equations governing the fluid flow are 

solved analytically and obtained the expressions for velocity, flow rate, wall shear 

stress, plug core radius, effective viscosity. We have discussed the effect of body 

acceleration, pulsatality, peripheral stenosis height and non-Newtonian behavior of 

blood on above mentioned flow quantities. It is found that the increase of stenosis size 

and yield stress increases the plug core radius, pressure drop, wall shear stress where as 

velocity and flow rate decreases. Body acceleration also plays a very important role in 

blood flow. The present study is more useful for the purpose of validation of the 

different models for blood flow in the different cases of stenosis. 
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Introduction 

Atherosclerosis is a major risk factor for many conditions involving the flow of blood. 

It is a potentially serious condition where arteries becomes clogged up by fatty 

substances known as plaques or atheroma. The plaques cause affected arteries to harden 

and narrow, which can be dangerous as restricted blood flow can damage organs and 

stop them functioning properly. According to the experts stenosis begins with the 

damage to the endothelium caused by the high blood pressure, smoking or high 

cholesterol. 

The flow of blood through a stenosed artery can be represented by different fluid models 

according to the situation. In the literature it is found that some researchers represented 

blood by Newtonian & non-Newtonian while some of the researchers considered single 

and two layered blood flow. Arteries are the blood vessels, carry blood from the heart 

throughout the body. Human heart pumps the blood in the circulatory system and 

produces the pressure gradient throughout the system. There are two components of the 

pressure gradient, one is constant and other is fluctuating or pulsatile. 

Body acceleration is a very important factor in blood flow modeling. Body acceleration 

disturbs the normal blood flow and causes many problems such as headache, abdominal 

pain, increases pulse rate and others. Rathod et. al. [12] describes the pulsatile flow of 

couple stress fluid through a porous medium with periodic body acceleration and 

magnetic field. Shaw et. al. [15] have shown the effect of body acceleration on the two 

dimensional flow of casson fluid through an artery with asymmetric stenosis where, the 

artery wall has been treated as an elastic cylindrical tube. 
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Srivastava [20] modeled a two layered blood flow through a narrow catheterized artery 

by considering blood as Newtonian, incompressible with variable blood viscosity. 

Bugliarello and Sevilla [2] and Hayden [3] have experimentally observed that when 

blood flows through narrow tubes there exists a cell free plasma layer near the wall. In 

view of their experiments, it is preferable to represent the flow of blood through narrow 

tubes by a two layered model instead of single layered model. Pulsatile couple stress 

fluid model through stenosed artery with the porous effect for non-Newtonian blood 

has been considered by Singh and Rathee [17]. Singh and Singh [16] presented a paper 

that deals with the blood flow through a radially non-symmetric stenosed artery 

considering blood as a non-Newtonian casson fluid model. 

Few authors focused on the pulsatile nature of blood, magnetic effect and body 

acceleration in stenotic artery with its application in different blood disease [1, 4, 8]. 

Mathematically the solution can be done by using Hankel transformation approach 

instead of either numerical or empirical approach by Haghighi [8]. Sankar et. al. [13] 

examine the effect of an external magnetic field on the blood flow through a composite 

stenosis by using a two layered blood flow model consisting of a cell free peripheral 

layer and a core region of erythrocytes in plasma flowing through a composite stenosis 

in the presence of an external transverse magnetic field. 

Hazarika and Sharma [9] considered a two-layered mathematical model for blood flow 

through tapering asymmetric stenosed artery with velocity slip at the interface under 

the effect of transverse magnetic field. Srivastava and saxena [18] investigated two-

layered model of casson’s fluid flow through stenotic blood vessels. Ponalgusamy [11] 

investigated blood flow through an artery with mild stenosis: A two-layered model, 

different shapes of stenosis and slip at the wall. 

Ellahi et. al. [7] considered a study of non-Newtonian micropolar fluid in an arterial 

blood flow through composite stenosis, slip velocity are taken into account with 

permeable wall effects.  

 

In the present analysis an attempt has been made to provide a model to examine the 

effect of an body acceleration on blood flow through an axially symmetric stenosis 

which has not yet been examined in previous works. For this purpose we have used a 

two-layered blood flow model consisting of a cell-free peripheral layer and a core 

region of erythrocytes in plasma. This two-layered model for blood flow provides a 

more realistic model for flow in small arteries since we cannot neglect the existence of 

the peripheral layer and the red blood cells in the plasma. The effect that the body 

acceleration has on the fluid's velocity, flow rate, wall shear stress and shear stress at 

the stenosis throat will be examined. Present model can lead to the improvement of 

existing diagnostic tools for a more effective treatment of patients suffering from 

cancer, hypertension, myocardial infarction, stroke and paralysis. 

 

Mathematical formulation 

We consider an axially symmetric, laminar, pusatile and fully developed flow of blood 

(assumed to be incompressible) through a circular tube with an axilly symmetric mild 

stenosis as shown in figure. It is assumed that the wall of the tube is rigid and the body 

fluid blood is represented by a two-fluid model with a core region of suspension of all 

erythrocytes as a cosson fluid and a peripheral layer of plasma as a Newtonian fluid. 

The artery length is assumed to be large enough as compared to it’s radius so that the 

entrance and the exit, special wall effects can be neglected. 
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The geometry of the stenosis in the peripheral region is given by 

  

 
    0 0

0

0

0

/ 2 1 cos / ,

,

P z z FR z
z

R

or z

F zz
R

or

   


 




                                                                (1) 

The geometry of stenosis in the core region is given by 
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Where  R z  is the radius of the stenosed artery with peripheral layer,  1R z  is the 

radius of the artery in the stenosed core region such that  1 ( )zzR R , 
0R  and 

0R  

are the radii of the normal artery and core region of the normal artery respectively; 
P  

is the maximum height of the stenosis in the peripheral region,  is the ratio of the 

central core radius to the normal artery radius, 
c  is the maximum height of the stenosis 

in the core region such that 
c P   and 

0z  is the half length of the stenosis. It has 

been reported that the radial velocity is the negligible small for a low Reynolds’s 

number flow in a tube with mild stenosis. 

The equation of motion governing the fluid flow are given by  
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In the core and peripheral regions respectively, where 
cu  and 

Nu  are the fluid velocities 

in the core region and peripheral regions respectively, 
c  and 

N  are the shear stresses 
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for the casson fluid and Newtonian fluid respectively, 
c and 

N are the densities for 

casson fluid and Newtonian fluid respectively, P  is the pressure and ( )F t  is the body 

acceleration. 

The consecutive equations for casson fluid and Newtonian fluid are respectively given 

by 
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Where pR is the radius of the plug flow region. 

The periodic body acceleration in the axial direction is given by 

 

0( ) cos( )bF t a t             (7) 

 

Where 
0a  is its amplitude, 2b bf  , 

bf  is its frequency in Hz.,   is the lead angle 

of ( )F t  with respected to the heart action. The frequency of body acceleration 
bf  is 

assumed to be small so that wave effect can be neglected. 

The pressure gradient at any z and t  may be represented as follows 
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Where 0A the steady component of the pressure gradient is, 
1A  is amplitude of the 

fluctuating component and 2p pf   where pf  is the pulse frequency. Both 0A and 

1A  are function of z  we introduce the following non-dimensional variables. 
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Where c and N  are pulsatile Reynolds’s number for casson fluid and Newtonian fluid 

respectively. 

Using non-dimensional variables, equation (1) and (2) becomes 
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The governing equation of motion given by equation (3) and (4) are represented in the 

non dimensional form as 
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using non dimensional variables equation (5) & (6) reduce to  

 
1

1/2 1/22
1

( )
2

c
c

u

r
 


  


   (15) 

0cu

r





   (16) 

 

1

2

N
N

u

r



 


   (17) 

 

The boundary conditions are 
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The boundary conditions in the dimensionless form are 
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The non-dimensional volumetric flow rate is given by 
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 
4

0 0

( )
( ) ; ( )

8 c

Q t
Q t Q t

R A 
  is the volumetric flow rate. 

 

Perturbation Method of Solution 

Since it is not possible to find an exact solution to the system of nonlinear equations 

(12)-(17), the perturbation method is used to obtain the approximate solution to the 

unknowns , ,c N cu u  and
N . when we non-dimensionalize the momentum equations (3) 

and (4) 
2

c  and 
2

N  occurs naturally and hence it is more appropriate to expand the 

equations (12)-(17) about 
2

c  and 
2

N . 

Let us expand the plug core velocity pu , the velocity in the core region 
cu  in the 

perturbation series of 
2

c  as below (where 
2

c <<1)  
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Substituting the perturbation series expansion in equation (12), (15) and (16) and 

equating the power of 
2

c  and constant terms.  
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Similarly using the perturbation series expansion in equation (13) and (17) then 

equating constant term and 
2

N  terms. 
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Now substituting the perturbation series expansion in equation (19) and then equating 

the constant term and
2

c ,
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N , we get  
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Neglecting the terms of 
2( )co  and higher power of

c  in equation (23), the first 

approximation plug core radius can be obtained as 
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Using equations (34) (35), (39), & (40) the expressions for axial velocities in the core 

and peripheral regions are obtained as 
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On replacing the value of 
0cu and 

1cu in equation (44) we get the value of 
cu  
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The expression for wall shear stress w  can be obtained as 
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From equation (20), (43) and (44) the volumetric flow rate is given by 
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4. Results and Discussions 

 

In the present model an attempt has been made to evaluate some of the important 

characteristics of blood flow past an arterial stenosis with the effect of body acceleration 

and pulsatile pressure gradient. In order to point out the biological importance and to 

examining the validity of the model, computer codes are developed to evaluate the 

analytical solution for flow rate, velocity profile, wall shear stress, effective viscosity 

for different values of parameters involved in equations (31)-(46). 

  

The value of womersley frequency parameters are taken as ( 0.5B N   ). 

The body acceleration parameter is taken in the range 0-2, the pressure gradient 

parameter e is taken in the range 0.5, the ratio of the central core radius to the normal 

radius of the artery is taken as 0.95.we have considered the magnitude of the lead angle 

  as 0.2, the range 0-0.5 is taken for the peripheral stenosis height, yield stress is taken 

as 0, 0.1. 
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Variation of axial velocity with radial distance has been shown in Fig. 2 and Fig. 3. 

From the Fig. 2 it is clearly observed that at 0r   velocity is maximum and minimum 

value at the stenotic wall ( )r R z  for fixed values of  

0 1, 0.2, 45 , 0.8, 1pL t e     o  and different values of body acceleration 

parameter ( 0,1,2)B  .It can be seen from Fig. 2 that axial velocity increases with the 

increase in body acceleration. Fig. 3 shows the variation of axial velocity with radial 

distance for different values of time t. Time plays a very important role in blood flow 

modeling. It is clearly seen from the Fig. 3, as time increases velocity decreases. When 

the blood is flowing to start i.e. when 0t   velocity is maximum. Now as we increase 

the time, velocity decreases. Velocity is less at (t=1, 1.5) than velocity at 0t  .   

Fig. 4 presents the flow rate distributions for the two fluid Casson models

0 0.1, 0.2, 0.8p pR      and 45t   at the throat of the stenosis (i.e.) when 0z  . 

Like the axial velocity flow rate also increases with the increase in body acceleration. 

In the absence of yield stress, the curves are linear while the curves are nonlinear with 

the increase in yield stress . It is also observed that when the yield stress  increases 

from  =0 to  =0.1, flow rate decreases because of increase in width of the plug flow 

region.    

 

 

The variation of wall shear stress with time and peripheral stenosis height is described 

in figures (5,6 and 7) for different flow parameters ( , , , ,pe B   ). Wall shear stress is 

symmtrical about 180t  . It is observed that the wall shear stress increases linearly 
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with the increase of the peripheral stenosis height from Fig. 5. Body acceleration also 

enhances the wall shear stress. 
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Fig. 6 and Fig. 7 shows the variation of wall shear stress with time t, full scale of time 

(0 360 )t t  has been considered. It is found that in a stenosed artery wall shear stress 

is highly influenced by body acceleration. Wall shear stress decreases with the increase 

in body acceleration. It is dipected that attains it’s minimum value at 180t   while, 

maximum at 0t   and 180t  . We can not ignore the effect of peripheral stenosis 
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height, since it is a very important factor in two layered blood flow modeling. Increase 

in peripheral stenosis height results an increase in wall shear stress. 

 

Conclusion 

We have considered the two-layered blood flow through stenosed artery with all 

erythrocytes in core region as a Casson fluid and peripheral layer of plasma as a 

Newtonian fluid. From the present results, it is clear that body acceleration is an 

important factor in blood flow modeling. In the present paper we have studied the effect 

of body acceleration on various flow parameters. It is depicted that flow rate and axial 

velocity increases but wall shear stress shows both increasing and decreasing trends 

with the increase in body acceleration parameter B, according to our imagination. This 

model is able to predict the some blood flow characteristics and may be useful in 

biomedical applications. In the near future the present study can be extended by 

considering magnetic effect of blood and permeability of wall.  
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