
e-Περιοδικό Επιστήμης & Τεχνολογίας
e-Journal of Science & Technology (e-JST)

http://e-jst.teiath.gr 31

VALLEY BASED VERTICAL PARTITIONING IN DISTRIBUTED

DATABASE

Sumti Medhavi and Akhilesh Kumar

Department of Computer Science and Engineering, Kanpur Institute of Technology,

Kanpur-208001, India.

Email ID: sumitmedhavi_k@rediffmail.com, sumitmedhavi@gmail.com, Ph.

+919473883031

Abstract

A Vertical Partitioning approach is defined as the method of dividing the attributes of

a relation. An efficient Vertical Partitioning method always puts frequently accessed

attributes of a relation together in a fragment. Various Partitioning algorithms have been

proposed by several researchers. Still there is a scope of further improvement in

previously developed algorithms. In this paper a new algorithm is proposed for Vertical

Partitioning in Distributed Database. The proposed algorithm is named as Valley Based

Vertical Partitioning Algorithm (VBVPA).This algorithm makes use of Clustered

Affinity Matrix (CAM), which is derived using Attribute Usage Matrix (AUM) and

Frequency Matrix (FM).

Keywords: Vertical Partitioning or Fragmentation, Attribute Usage Matrix,

Frequency Matrix, Attribute Affinity Matrix, Bond Energy Algorithm, Bond Matrix,

Clustered Affinity Matrix.

1. INTRODUCTION

In Distributed Database, the fragments of a relation are distributed over the collection

of independent sites. Further, it may be possible that the queries may not be able to

access the attributes locally. Hence, there is a requirement of communication to other

sites to access the required attributes or result. Frequent number of communication to

other sites in a distributed system results in increase in Query Response Time (QRT).

A Vertical Partitioning approach of relation plays a vital role in enhancing the Query

Response Time (QRT). An efficient Vertical Partitioning Approach divides the

attributes of a large relation into smaller fragments, thus improving Query Response

Time (QRT). Frequently accessed fragments of a relation are stored in main memory

resulting in reduction of page accessing from secondary memory. Further in a

distributed database system a query can also be divided into sub-queries resulting in

concurrent execution on different fragments.

There are basically two approaches for partitioning of a relation namely Horizontal

Partitioning and Vertical Partitioning. Horizontal Partitioning divides a relation into

smaller fragments on the basis of rows. Each fragment contains equal number of

columns or attributes, but the number of rows is reduced. Vertical Partitioning is an

approach of dividing a relation into smaller fragments on the basis of columns. Each

fragment contains less number of columns.

Since a query does not necessarily requires all the attributes of a relation at the same

time. So the Vertical Partitioning approach is more effective in enhancing Query

http://e-jst.teiath.gr/
mailto:sumitmedhavi_k@rediffmail.com
mailto:sumitmedhavi@gmail.com

e-Περιοδικό Επιστήμης & Τεχνολογίας
e-Journal of Science & Technology (e-JST)

 10 (4), 2015 32

Response Time (QRT) than Horizontal Partitioning approach. In this paper a new

Vertical Partitioning algorithm named as VBVPA is proposed for Vertical

Fragmentation.

The input to this algorithm is Clustered Affinity Matrix (CAM) which is calculated

using the values of Attribute Usage Matrix (AUM) and Frequency Matrix (FM). After

the calculation of Clustered Affinity Matrix (CAM), the fragments of a relation is

created using VBVPA taking Clustered Affinity Matrix (CAM) as input. This algorithm

partitions the attributes of a relation where a valley will be formed.

Rest of the paper is organized as follows. In section 2 previous works on partitioning

has been reviewed. In section 3 technique used in VBVPA for vertical fragmentation

has been discussed. In section 4 and 5 experimental set and result has been described.

Finally section 6 contains the conclusion and future scope.

2. LITERATURE REVIEW

Since early 1970s, minimization of disk I/O has been an important concern. From that

time various partitioning algorithm have been devised to reduce I/O accessing through

clustering of attributes of a large relation. This results in the reduction of page accessing

from secondary memory.

In 1972, McCormick et al in [4] developed the first algorithm for clustering named as

Bond Energy Algorithm (BEA). The purpose of this algorithm was to identify the

clusters in a complex relation. The limitation of this algorithm was that it required

human interpretation to implement. Sometimes blocks overlapping might be possible

and also some blocks may not contain the required elements. So this method of

clustering was not considered efficient.

In 1984, after the introduction of BEA, a new algorithm was developed by Navathe et

al. in [5]. This algorithm uses frequency of queries first time and reflects the values of

Frequency Matrix in Attribute Affinity Matrix (AAM) on the basis of which clustering

was performed. The complexity of this algorithm was O (n2) where n denotes the

number of times the partitioning was repeated. The complexity can also increase if the

overlapping was allowed.

The Optimal Binary Vertical Partitioning Algorithm was proposed by Wesley W. Chu

et.al in [7]. It used the branch and bound technique [3] to make binary tree whose nodes

represented the query. This algorithm reduced time complexity as compared to Navathe

et.al. in [6]. The drawback of this algorithm was that it didn’t consider the impact of

frequency of query and also its running time were increasing with the number of

queries.

The Graph Traversal Vertical Partitioning was proposed by Navathe et.al. in [6] in

1989. This algorithm traversed the graph and divided the graph into several sub graphs,

each of which represented a cluster. The problem in this algorithm was that the frequent

and infrequent queries were given the same priority, which might result in inefficient

partitioning. This was due to fact that the attributes that were usually accessed together

in infrequent queries but were not accessed in frequent queries might be put into same

fragment.

The Eltayeb’s Optimized Vertical Partitioning Scheme [1] was also based on Attribute

Affinity Matrix [5]. This algorithm started with a vertex V that satisfied the minimum

degree of Reflexivity and then searched a vertex with the maximum degree of symmetry

among V’s neighbors of the most recent V recursively until a cycle was formed or no

vertex was left. The next step was to calculate the hit ratio of partition. If the partition

hit ratio was less than predefined Threshold then identify the attribute with the

e-Περιοδικό Επιστήμης & Τεχνολογίας
e-Journal of Science & Technology (e-JST)

http://e-jst.teiath.gr 33

minimum hit to miss ratio and moved it to a different subset. The limitation of this

algorithm was similar to the Graph Traversal Vertical Partitioning algorithm that the

infrequent queries were considered same as frequent queries.

3. DESCRIPTION OF VALLEY BASED PROCEDURE

In this section Valley Based Vertical Partitioning Algorithm (VBVPA), used for fragmentation

of a relation is discussed in detail. First of all by using the values of Attribute Usage Matrix

(AUM) and Frequency Matrix (FM), Clustered Affinity Matrix (CAM) is calculated. Then

VBVPA is used for partitioning of a relation.

3.1 Attribute Usage Matrix (AUM)

The Attribute Usage Matrix denotes which attributes of a relation are used by a query. For each

combination of row and column of this matrix has only one of the two values either 0 or 1. As

shown in the Table 1, the value 1 in the matrix denotes that the attribute AI is queried by query

QJ otherwise 0 is associated.

USE (QI, AJ) = 1, if Attribute AI is used by Query QI

 0, otherwise (1)

 Table 1. Attribute Usage Matrix

Query Attribute

A1 A2 A3 A4

Q1 1 0 1 1

Q2 0 1 0 1

Q3 1 0 1 0

Q4 0 1 1 1

3.2 Frequency Matrix (FM)

This matrix denotes the number of times a query is fired from a particular site as shown in

Table 2 below.

Table 2. Frequency Matrix

3.3 Attribute Affinity Matrix (AAM)

This matrix denotes the strength of an imaginary bond between two attributes of a relation. It

is based on the fact that two attributes are used together by a query. The value of this matrix

represents the number of times two attributes are accessed together at all the sites.

Query Site

S1 S2 S3

Q1 10 15 5

Q2 7 4 0

Q3 12 15 20

Q4 4 3 2

http://e-jst.teiath.gr/

e-Περιοδικό Επιστήμης & Τεχνολογίας
e-Journal of Science & Technology (e-JST)

 10 (4), 2015 34

Attribute Affinity Value between AI and AJ is represented as Aff (AI, AJ).

Aff (AI, AJ) =
I Jall queries that access A and A

Query access (2)

Where

Query access (Q1) = 30

Query access (Q2) = 11

Query access (Q3) = 47

Query access (Q4) = 9

Aff (AI, AJ) =
1Q
query access = 30

In the same way all the other Attribute Affinity values are calculated as shown in Table 3.

Table 3. Attribute Affinity Matrix

Attribute Attribute

A1 A2 A3 A4

Q1 1 0 1 1

Q2 0 1 0 1

Q3 1 0 1 0

Q4 0 1 1 1

3.4 Clustered Affinity Matrix (CAM)

For fragmentation of attributes in a relation, the attributes must be clustered. Clustering problem

is widely researched in data mining, databases and statistics communities [8], [9], [10], [11],

[12], [13]. Hover and Severance in [2] has proposed that a Bond Energy Algorithm (BEA)

should be used for clustering. This algorithm takes Attribute Affinity Matrix as input, changes

the order of its rows and columns, and produces a Clustered Affinity Matrix (CAM) as output.

The Bond Energy Algorithm clusters the attribute which have high Attribute Affinity value.

Bond Energy Algorithm has been implemented in three steps.

Initialization: In this step, first two columns of Attribute Affinity Matrix (AAM) are placed

directly to the respective columns in the Clustered Affinity Matrix (CAM).

Iteration: After the initialization step, the remaining attributes (N-1) are picked one by one and

try to place them in remaining (I+1) positions in Clustered Affinity Matrix. The placement is

done on the basis of Global Affinity Measure. This process is continued until no more columns

attribute remains to be placed.

Row Ordering: Once the placement of attribute in column is determined, the placement of row

attributes should also be changing so that their relative positions match the relative positions of

the columns attributes.

BEA is used to get the position of attributes in Clustered Affinity Matrix (CAM). The attribute

is placed to a position where the contribution of attribute placement is highest.

3.4.1 Placement of attributes in CAM

e-Περιοδικό Επιστήμης & Τεχνολογίας
e-Journal of Science & Technology (e-JST)

http://e-jst.teiath.gr 35

Placement of A1 and A2:

In the initialization step first and second columns of Attribute Affinity Matrix (AAM) are

placed in the first and second columns of Clustered Affinity Matrix (CAM) respectively.

Attribute A1 is placed at position 1 in CAM: [A1]

Attribute A2 is placed at position 2 in CAM: [A1, A2]

Placement of A3:

Attribute A3 is placed at position 1 in CAM =27442

Attribute A3 is placed at position 2 in CAM =28324

Attribute A3 is placed at position 3 in CAM =3468

Attribute A3 is placed at position 2 in CAM: [A1, A3, A2]

Placement of A4:

Attribute A4 is placed at position 1 in CAM =13626

Attribute A4 is placed at position 2 in CAM =1772

Attribute A4 is placed at position 3 in CAM =15622

Attribute A4 is placed at position 4 in CAM =3502

Attribute A3 is placed at position 2 in CAM: [A1, A3, A4, A2]

Hence in the Clustered Affinity Matrix (CAM), the order of placement of attributes in rows

and columns are shown below:

Table 4. Clustered Affinity Matrix

Attribute Attribute

A1 A3 A4 A2

 A1 77 77 30 0

A3 77 86 39 9

A4 30 39 50 20

A2 0 9 20 20

3.5 Valley Based Vertical Partitioning Algorithm

The objective of this algorithm is to search the set of frequently accessed attributes by a distinct

set of queries. Using the Valley Based Vertical Partitioning Algorithm, user fragments a relation

based on Clustered Affinity Matrix (CAM), calculated from Attribute Usage Matrix (AUM)

and Frequency Matrix (FM). In this algorithm, first row of the Clustered Affinity Matrix (CAM)

is taken as input to find the clusters of attributes in a relation. Further, we calculate the

difference between neighboring attribute values of first row of Clustered Affinity Matrix

(CAM) and the point at which the current differentiated value is less than the previous and the

next differentiated value is considered as split point. The pseudo code for the VBVPA is given

below:

Algorithm: VBVPA

Input: CAM: Clustered Affinity Matrix

Output: P: set of fragments

Begin

[Initialize Variables]

X [N]; // Used to store value from 1 to N of loop in corresponding index.

Y [N]; //Used to store the differentiated values.

splitPoint = 0; //Used to store point of split.

http://e-jst.teiath.gr/

e-Περιοδικό Επιστήμης & Τεχνολογίας
e-Journal of Science & Technology (e-JST)

 10 (4), 2015 36

[Evaluating the split point]

Y [1] = CAM (1, 1);

X [1] = 1;

For i = 2 to n do

 Y [i] = CAM (1, i) – CAM (1, i-1);

 X [i] = i;

End- For

splitPoint = 1;

For i = 2 to n do

 If (Y [i] < Y [i-1] && Y [i] < Y [i+1]) then

 splitPoint = X[i];

 End-If

End-For

End-Begin

This algorithm mainly involves three steps:

Initialization: In this step the variables and arrays are initialized as required by algorithm.

Processing: In this step first row of Clustered Affinity Matrix (CAM) are taken as input for

finding the clusters of attributes in a relation. The user keeps the first value of row as it is in

Y[1] and then finds the difference of remaining CAM(1,i) values and stores it in Y[i].

 Table 5. First Row Of Clustered Affinity Matrix

Attribute Attribute

A1 A3 A4 A2

 A1 77 77 30 0

Comparison: In this step the user compares each value of array Y[i] with the immediate

previous and next values of Y[i], wherever the current value is found less than previous and

next values that point is considered as split-point. The following calculation is performed with

referenced to CAM.

The graph below shows the Valley value Y [i] at point i.

1 2 3 4 5

-60

-40

-20

0

20

40

60

80

e-Περιοδικό Επιστήμης & Τεχνολογίας
e-Journal of Science & Technology (e-JST)

http://e-jst.teiath.gr 37

Y [1] = CAM (1, 1) = 77, X [1] = 1

Y [2] = CAM (1, 2) = 77-77= 0, X [2] = 2

Y [3] = CAM (1, 3) = 30-77= -47, X [3] = 3

Y [4] = CAM (1, 4) = 0-30= -30, X [4] = 4

The graph above shows the valley formed between the values X [2] =2 and X [4] =4 i.e. at point

X [3] =3.So the split point is recorded between second and third attribute of CAM. Hence the

Clustered Affinity Matrix is divided into two fragments. The first fragment contains the

attributes {A1, A3} while the second fragment contains the attributes {A4, A2}.

4. EXPERIMENTAL SETUP
An experiment performed to test the working of the proposed Valley Based Partitioning

Algorithm (VBVPA). It has been carried out on a system with CORE i4 processor, 4GB

RAM, NetBeans 7.3(Java 1.6)Tool, Oracle 10g database. A relation naming Employee

has been used for fragmentation. This relation has been stored in oracle 10g database

as following.

Table 6. Employee

ENO ENAME SALARY CITY

E1 RAM 20000 NEW

YORK

E2 SHYAM 15000 LAS

VEGAS

E3 MOHAN 25000 NEW

YORK

E4 SUMIT 10000 CHICAGO

The following are the queries generated from three sites named S1, S2, S3 .

Q1: Find the employee number and their sum or salaries given their city name.

(SELECT ENO, SUM (SALARY) FROM EMPLOYEE WHERE CITY = value).

Q2: Find the name of the employees from a given city name. (SELECT ENAME

EMPLOYEE WHERE CITY= value)

Q3: Find the salary of an employee whose name is given. (SELECT SALARY FROM

EMPLOYEE WHERE ENAME = value).

Q4: Find the name of employees and their salaries where city name is given. (SELECT

ENAME, SALARY FROM EMPLOYEE WHERE CITY = value).

The Attribute Usage Matrix of the relation named Employee is

Table 7. Attribute Usage Matrix Employee

Query Attribute

ENO ENAME SALARY CITY

Q1 1 0 1 1

Q2 0 1 0 1

Q3 1 0 1 0

Q4 0 1 1 1

http://e-jst.teiath.gr/

e-Περιοδικό Επιστήμης & Τεχνολογίας
e-Journal of Science & Technology (e-JST)

 10 (4), 2015 38

The Frequency of queries Q1, Q2, Q3, Q4 at three sites S1, S2, S3 is

Table 8. Frequency Matrix Employee

Query Site

S1 S2 S3

Q1 10 15 5

Q2 7 4 0

Q3 12 15 20

Q4 4 3 2

5. EXPERIMENTAL RESULT

Clustered Affinity Matrix (CAM) is calculated from Attribute Usage Matrix (AUM), Frequency

Matrix (FM) and also by using Hoffer and Severance Bond Energy Algorithm (BEA) in [2].

The CAM is shown in Table 9 below.

 Table 9. Clustered Affinity Matrix Employee

Attribute Attribute

ENO SALARY CITY ENAME

ENO 77 77 30 0

SALARY 77 86 39 9

CITY 30 39 50 20

ENAME 0 9 20 20

Now by taking first row of Clustered Affinity Matrix (CAM) as input in Valley Based Vertical

Partitioning Algorithm (VBVPA), two fragments of relation Employee has been found. The

first fragment contains the attributes ENO and SALARY whereas second fragment has

attributes CITY and ENAME.

Below Table 10 and 11 shows the two resulting fragments.

Table 10.

ENO SALARY

E1 20000

E2 15000

E3 25000

E4 10000

Table 11.

CITY ENAME

NEW

YORK

RAM

LAS

VEGAS

SHYAM

NEW

YORK

MOHAN

CHICAGO SUMIT

e-Περιοδικό Επιστήμης & Τεχνολογίας
e-Journal of Science & Technology (e-JST)

http://e-jst.teiath.gr 39

6. CONCLUSION AND FUTURE SCOPE

In this paper, Valley Based Vertical Partitioning Algorithm has been proposed and has been

successfully implemented in order to improve the Query Response Time (QRT) in Distributed

Database. The proposed algorithm VBVPA takes CAM as input and produces the fragmentation

of a relation. CAM is calculated by using the values of AUM and FM.

The future scope of this proposal is that it may be possible that there can be a long interval

between two valleys formed in a relation. Hence a new Valley based algorithm is needed to be

devised in order to minimize the fragments having more number of attributes.

7. REFERENCES

[1] Abuelyaman, E. S., “An Optimized Scheme for Vertical Partitioning of a Distributed

Database,” in International Journal of Computer Science and Network Security (IJCSNS),

Vol. 8, No. 1, January 2008, 310-316.

[2] Hoffer, J.A. and Severance, D.J. 1975.The use of cluster analysis in physical database

design. In Proceedings of the 1st International Conference on Very Large Data Bases, New

York, USA.

[3] Horowitz, E. and Sahni, S. 1978. Fundamentals of Computer Algorithms. Computer

Science Press Rockville, Maryland.

[4] McCormick, W. T. Schweitzer P.J., and White T.W., “Problem Decomposition and Data

Reorganization by A Clustering Technique,” Operation Research, Vol. 20 No. 5,

September 1972, 993-1009.

[5] Navathe, S., Ceri, S., Wierhold, G. and Dou, J., “Vertical Partitioning Algorithms for

Database Design,” ACM Transactions on Database Systems, Vol. 9 No. 4, December

1984, 680-710.

[6] Navathe, S. and Ra M., “Vertical Partitioning for Database Design: A Graph Algorithm,”

ACM Special Interest Group on Mamagement of Data (SIGMOD) International

Conference on Management of Data, Vol.18 No. 2, June 1989, 440-450.

[7] Chu, W. W. and Ieong, I. “A Transaction-Based Approach to Vertical Partitioning for

Relational Database Systems,” IEEE Transactions on Software Engineering, Vol. 19 No.

8, August 1993, 408-412.

[8] Bradley, P. S., Fayyad, U. M. and Reina, C., “Scaling Clustering Algorithms to Large

Databases”, in proceedings of the 4th International Conference on Knowledge Discovery

& Data Mining , June 1998, 9-15.

[9] Guha, S., Rastogi, R. and Shim, K., “CURE: an efficient clustering algorithm for large

databases”, in proceedings of the 1998 ACM SIGMOD international conference on

Management of data, Vol. 27, Issue 2, June 1998, 73-84.

[10] Ng, R. T. and. Han, J., “Efficient and Effective Clustering Methods for Spatial Data

Mining”, Proceedings of the 20th International Conference on Very Large Data Bases,

September 1994, 144-155.

http://e-jst.teiath.gr/

e-Περιοδικό Επιστήμης & Τεχνολογίας
e-Journal of Science & Technology (e-JST)

 10 (4), 2015 40

[11] Jain, A. and Dubes, R., “Algorithms for Clustering Data”, Prentice Hall, New Jersey, 1998.

[12] Kaufman, L., Rousseuw, P., “Finding Groups in Data- An Introduction to Cluster

Analysis”, Wiley Series in Probability and Math. Sciences, 1990.

[13] Zhang, T., Ramakrishnan, R. and Livny, M., “An Efficient Data Clustering Method for

Very Large Databases”, in proceedings of the SIGMOD international conference on

Management of data, June 1996, 103-114.

[14] Ashish Ranjan Mishra, Neelendra Badal, “Slop based Partitioning for Vertical

Fragmentation in Distributed Database System”, in International Journal of Computer

Applications (0975 – 8887) Volume 99– No.4, August 2014.

