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Abstract 
 

A Vertical Partitioning approach is defined as the method of dividing the attributes of 

a relation. An efficient Vertical Partitioning method always puts frequently accessed 

attributes of a relation together in a fragment. Various Partitioning algorithms have been 

proposed by several researchers. Still there is a scope of further improvement in 

previously developed algorithms. In this paper a new algorithm is proposed for Vertical 

Partitioning in Distributed Database. The proposed algorithm is named as Valley Based 

Vertical Partitioning Algorithm (VBVPA).This algorithm makes use of Clustered 

Affinity Matrix (CAM), which is derived using Attribute Usage Matrix (AUM) and 

Frequency Matrix (FM). 

 

Keywords: Vertical Partitioning or Fragmentation, Attribute Usage Matrix, 

Frequency Matrix, Attribute Affinity Matrix, Bond Energy Algorithm, Bond Matrix, 

Clustered Affinity Matrix. 

 

 

1. INTRODUCTION 

In Distributed Database, the fragments of a relation are distributed over the collection 

of independent sites. Further, it may be possible that the queries may not be able to 

access the attributes locally. Hence, there is a requirement of communication to other 

sites to access the required attributes or result. Frequent number of communication to 

other sites in a distributed system results in increase in Query Response Time (QRT). 

A Vertical Partitioning approach of relation plays a vital role in enhancing the Query 

Response Time (QRT).  An efficient Vertical Partitioning Approach divides the 

attributes of a large relation into smaller fragments, thus improving Query Response 

Time (QRT). Frequently accessed fragments of a relation are stored in main memory 

resulting in reduction of page accessing from secondary memory. Further in a 

distributed database system a query can also be divided into sub-queries resulting in 

concurrent execution on different fragments. 

There are basically two approaches for partitioning of a relation namely Horizontal 

Partitioning and Vertical Partitioning. Horizontal Partitioning divides a relation into 

smaller fragments on the basis of rows. Each fragment contains equal number of 

columns or attributes, but the number of rows is reduced. Vertical Partitioning is an 

approach of dividing a relation into smaller fragments on the basis of columns. Each 

fragment contains less number of columns. 

Since a query does not necessarily requires all the attributes of a relation at the same 

time. So the Vertical Partitioning approach is more effective in enhancing Query 
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Response Time (QRT) than Horizontal Partitioning approach. In this paper a new 

Vertical Partitioning algorithm named as VBVPA is proposed for Vertical 

Fragmentation. 

The input to this algorithm is Clustered Affinity Matrix (CAM) which is calculated 

using the values of Attribute Usage Matrix (AUM) and Frequency Matrix (FM). After 

the calculation of Clustered Affinity Matrix (CAM), the fragments of a relation is 

created using VBVPA taking Clustered Affinity Matrix (CAM) as input. This algorithm 

partitions the attributes of a relation where a valley will be formed. 

Rest of the paper is organized as follows. In section 2 previous works on partitioning 

has been reviewed. In section 3 technique used in VBVPA for vertical fragmentation 

has been discussed. In section 4 and 5 experimental set and result has been described. 

Finally section 6 contains the conclusion and future scope. 

 

2. LITERATURE REVIEW 

Since early 1970s, minimization of disk I/O has been an important concern. From that 

time various partitioning algorithm have been devised to reduce I/O accessing through 

clustering of attributes of a large relation. This results in the reduction of page accessing 

from secondary memory. 

In 1972, McCormick et al in [4] developed the first algorithm for clustering named as 

Bond Energy Algorithm (BEA). The purpose of this algorithm was to identify the 

clusters in a complex relation. The limitation of this algorithm was that it required 

human interpretation to implement. Sometimes blocks overlapping might be possible 

and also some blocks may not contain the required elements. So this method of 

clustering was not considered efficient. 

In 1984, after the introduction of BEA, a new algorithm was developed by Navathe et 

al. in [5]. This algorithm uses frequency of queries first time and reflects the values of 

Frequency Matrix in Attribute Affinity Matrix (AAM) on the basis of which clustering 

was performed. The complexity of this algorithm was O (n2) where n denotes the 

number of times the partitioning was repeated. The complexity can also increase if the 

overlapping was allowed. 

The Optimal Binary Vertical Partitioning Algorithm was proposed by Wesley W. Chu 

et.al in [7]. It used the branch and bound technique [3] to make binary tree whose nodes 

represented the query. This algorithm reduced time complexity as compared to Navathe 

et.al. in [6]. The drawback of this algorithm was that it didn’t consider the impact of 

frequency of query and also its running time were increasing with the number of 

queries. 

The Graph Traversal Vertical Partitioning was proposed by Navathe et.al. in [6] in 

1989. This algorithm traversed the graph and divided the graph into several sub graphs, 

each of which represented a cluster. The problem in this algorithm was that the frequent 

and infrequent queries were given the same priority, which might result in inefficient 

partitioning. This was due to fact that the attributes that were usually accessed together 

in infrequent queries but were not accessed in frequent queries might be put into same 

fragment. 

The Eltayeb’s Optimized Vertical Partitioning Scheme [1] was also based on Attribute 

Affinity Matrix [5]. This algorithm started with a vertex V that satisfied the minimum 

degree of Reflexivity and then searched a vertex with the maximum degree of symmetry 

among V’s neighbors of the most recent V recursively until a cycle was formed or no 

vertex was left. The next step was to calculate the hit ratio of partition. If the partition 

hit ratio was less than predefined Threshold then identify the attribute with the 
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minimum hit to miss ratio and moved it to a different subset. The limitation of this 

algorithm was similar to the Graph Traversal Vertical Partitioning algorithm that the 

infrequent queries were considered same as frequent queries. 

  

3. DESCRIPTION OF VALLEY BASED PROCEDURE 

In this section Valley Based Vertical Partitioning Algorithm (VBVPA), used for fragmentation 

of a relation is discussed in detail. First of all by using the values of Attribute Usage Matrix 

(AUM) and Frequency Matrix (FM), Clustered Affinity Matrix (CAM) is calculated. Then 

VBVPA is used for partitioning of a relation. 

 

3.1 Attribute Usage Matrix (AUM) 

The Attribute Usage Matrix denotes which attributes of a relation are used by a query. For each 

combination of row and column of this matrix has only one of the two values either 0 or 1. As 

shown in the Table 1, the value 1 in the matrix denotes that the attribute AI is queried by query 

QJ otherwise 0 is associated. 

 

USE (QI, AJ) = 1, if Attribute AI is used by Query QI 

                            0, otherwise                                                                                                  (1)  

     

            Table 1. Attribute Usage Matrix 

Query Attribute 

A1 A2 A3 A4 

Q1 1 0 1 1 

Q2 0 1 0 1 

Q3 1 0 1 0 

Q4 0 1 1 1 

 

 

3.2 Frequency Matrix (FM) 

 
This matrix denotes the number of times a query is fired from a particular site as shown in 

Table 2 below. 

  

Table 2. Frequency Matrix 

 

 

 

 

3.3 Attribute Affinity Matrix (AAM) 

 
This matrix denotes the strength of an imaginary bond between two attributes of a relation. It 

is based on the fact that two attributes are used together by a query. The value of this matrix 

represents the number of times two attributes are accessed together at all the sites. 
 

Query Site 

S1 S2 S3 

Q1 10 15 5 

Q2 7 4 0 

Q3 12 15 20 

Q4 4 3 2 
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Attribute Affinity Value between AI and AJ is represented as Aff (AI, AJ). 

 

Aff (AI, AJ) = 
I Jall queries that access A and A

Query access                                       (2) 

 

Where 

 

Query access (Q1) = 30   

Query access (Q2) = 11 

Query access (Q3) = 47 

Query access (Q4) = 9 

 

Aff (AI, AJ) = 
1Q
query access = 30 

 

In the same way all the other Attribute Affinity values are calculated as shown in Table 3. 
 

Table 3. Attribute Affinity Matrix 

Attribute Attribute 

A1 A2 A3 A4 

Q1 1 0 1 1 

Q2 0 1 0 1 

Q3 1 0 1 0 

Q4 0 1 1 1 

 

 

3.4 Clustered Affinity Matrix (CAM) 
 

For fragmentation of attributes in a relation, the attributes must be clustered. Clustering problem 

is widely researched in data mining, databases and statistics communities [8], [9], [10], [11], 

[12], [13]. Hover and Severance in [2] has proposed that a Bond Energy Algorithm (BEA) 

should be used for clustering. This algorithm takes Attribute Affinity Matrix as input, changes 

the order of its rows and columns, and produces a Clustered Affinity Matrix (CAM) as output. 

The Bond Energy Algorithm clusters the attribute which have high Attribute Affinity value. 

Bond Energy Algorithm has been implemented in three steps. 

 

Initialization: In this step, first two columns of Attribute Affinity Matrix (AAM) are placed 

directly to the respective columns in the Clustered Affinity Matrix (CAM). 

 

Iteration: After the initialization step, the remaining attributes (N-1) are picked one by one and 

try to place them in remaining (I+1) positions in Clustered Affinity Matrix. The placement is 

done on the basis of Global Affinity Measure. This process is continued until no more columns 

attribute remains to be placed. 

 

Row Ordering: Once the placement of attribute in column is determined, the placement of row 

attributes should also be changing so that their relative positions match the relative positions of 

the columns attributes. 

 

BEA is used to get the position of attributes in Clustered Affinity Matrix (CAM). The attribute 

is placed to a position where the contribution of attribute placement is highest. 

 

 

 

3.4.1 Placement of attributes in CAM 
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Placement of A1 and A2: 

In the initialization step first and second columns of Attribute Affinity Matrix (AAM) are 

placed in the first and second columns of Clustered Affinity Matrix (CAM) respectively. 

Attribute A1 is placed at position 1 in CAM: [A1] 

Attribute A2 is placed at position 2 in CAM: [A1, A2] 

 

Placement of A3: 

Attribute A3 is placed at position 1 in CAM =27442 

Attribute A3 is placed at position 2 in CAM =28324 

Attribute A3 is placed at position 3 in CAM =3468 

Attribute A3 is placed at position 2 in CAM: [A1, A3, A2 ] 

 

Placement of A4: 

Attribute A4 is placed at position 1 in CAM =13626 

Attribute A4 is placed at position 2 in CAM =1772 

Attribute A4 is placed at position 3 in CAM =15622 

Attribute A4 is placed at position 4 in CAM =3502 

Attribute A3 is placed at position 2 in CAM: [A1, A3, A4, A2 ] 

 

Hence in the Clustered Affinity Matrix (CAM), the order of placement of attributes in rows 

and columns are shown below:  

 

Table 4. Clustered Affinity Matrix 

Attribute Attribute 

A1 A3 A4 A2 

     A1 77 77 30 0 

A3 77 86 39 9 

A4 30 39 50 20 

A2 0 9 20 20 

 

 

3.5 Valley Based Vertical Partitioning Algorithm 

 
The objective of this algorithm is to search the set of frequently accessed attributes by a distinct 

set of queries. Using the Valley Based Vertical Partitioning Algorithm, user fragments a relation 

based on Clustered Affinity Matrix (CAM), calculated from Attribute Usage Matrix (AUM) 

and Frequency Matrix (FM). In this algorithm, first row of the Clustered Affinity Matrix (CAM) 

is taken as input to find the clusters of attributes in a relation. Further, we calculate the 

difference between neighboring attribute values of first row of Clustered Affinity Matrix 

(CAM) and the point at which the current differentiated value is less than the previous and the 

next differentiated value is considered as split point. The pseudo code for the VBVPA is given 

below: 

 

Algorithm: VBVPA 

Input: CAM: Clustered Affinity Matrix 

Output: P: set of fragments 

Begin 

[Initialize Variables] 

 

X [N];   // Used to store value from 1 to N of loop in corresponding index. 

Y [N];    //Used to store the differentiated values. 

splitPoint = 0;  //Used to store point of split.  

http://e-jst.teiath.gr/


e-Περιοδικό Επιστήμης & Τεχνολογίας                                                                                      
e-Journal of Science & Technology (e-JST) 

 

                            10 (4), 2015                                                                                                                  36 

 

[Evaluating the split point] 

 

Y [1] = CAM (1, 1); 

X [1] = 1; 

For i = 2 to n do 

  Y [i] = CAM (1, i) – CAM (1, i-1); 

  X [i] = i; 

End- For 

splitPoint = 1; 

For i = 2 to n do 

  If (Y [i] < Y [i-1] && Y [i] < Y [ i+1]) then 

   splitPoint = X[i]; 

  End-If 

End-For 

End-Begin 

 

This algorithm mainly involves three steps: 

Initialization: In this step the variables and arrays are initialized as required by algorithm. 

 

Processing: In this step first row of Clustered Affinity Matrix (CAM) are taken as input for 

finding the clusters of attributes in a relation. The user keeps the first value of row as it is in 

Y[1] and then finds the difference of remaining CAM(1,i) values and stores it in Y[i]. 

 

 Table 5. First Row Of Clustered Affinity Matrix 

 

Attribute Attribute 

A1 A3 A4 A2 

     A1 77 77 30 0 

 

 

Comparison: In this step the user compares each value of array Y[i] with the immediate 

previous and next values of Y[i], wherever the current value is found less than previous and 

next values that point is considered as split-point. The following calculation is performed with 

referenced to CAM. 

 

The graph below shows the Valley value Y [i] at point i. 
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Y [1] = CAM (1, 1) = 77, X [1] = 1 

Y [2] = CAM (1, 2) = 77-77= 0, X [2] = 2 

Y [3] = CAM (1, 3) = 30-77= -47, X [3] = 3 

Y [4] = CAM (1, 4) = 0-30= -30, X [4] = 4 

 

The graph above shows the valley formed between the values X [2] =2 and X [4] =4 i.e. at point 

X [3] =3.So the split point is recorded between second and third attribute of CAM. Hence the 

Clustered Affinity Matrix is divided into two fragments. The first fragment contains the 

attributes {A1, A3} while the second fragment contains the attributes {A4, A2}. 

 

 

4. EXPERIMENTAL SETUP 
An experiment performed to test the working of the proposed Valley Based Partitioning 

Algorithm (VBVPA). It has been carried out on a system with CORE i4 processor, 4GB 

RAM, NetBeans 7.3(Java 1.6)Tool, Oracle 10g database. A relation naming Employee 

has been used for fragmentation. This relation has been stored in oracle 10g database 

as following. 
  

Table 6. Employee 

 

ENO ENAME SALARY CITY 

E1 RAM 20000 NEW 

YORK 

E2 SHYAM 15000 LAS 

VEGAS 

E3 MOHAN 25000 NEW 

YORK 

E4 SUMIT 10000 CHICAGO 

 

The following are the queries generated from three sites named S1, S2, S3 . 

Q1: Find the employee number and their sum or salaries given their city name. 

(SELECT ENO, SUM (SALARY) FROM EMPLOYEE WHERE CITY = value). 

Q2: Find the name of the employees from a given city name. (SELECT ENAME 

EMPLOYEE WHERE CITY= value) 

Q3: Find the salary of an employee whose name is given. (SELECT SALARY FROM 

EMPLOYEE WHERE ENAME = value). 

Q4: Find the name of employees and their salaries where city name is given. (SELECT 

ENAME, SALARY FROM EMPLOYEE WHERE CITY = value). 

 

The Attribute Usage Matrix of the relation named Employee is 
  

         

Table 7. Attribute Usage Matrix Employee 

 

Query Attribute 

ENO ENAME SALARY CITY 

Q1 1 0 1 1 

Q2 0 1 0 1 

Q3 1 0 1 0 

Q4 0 1 1 1 
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The Frequency of queries Q1, Q2, Q3, Q4 at three sites S1, S2, S3 is 

 

Table 8. Frequency Matrix Employee 

 

Query Site 

S1 S2 S3 

Q1 10 15 5 

Q2 7 4 0 

Q3 12 15 20 

Q4 4 3 2 

 

 

5. EXPERIMENTAL RESULT 
 

Clustered Affinity Matrix (CAM) is calculated from Attribute Usage Matrix (AUM), Frequency 

Matrix (FM) and also by using Hoffer and Severance Bond Energy Algorithm (BEA) in [2]. 

The CAM is shown in Table 9 below. 

 

 

          Table 9. Clustered Affinity Matrix Employee 

 

Attribute Attribute 

ENO SALARY CITY ENAME 

ENO 77 77 30 0 

SALARY 77 86 39 9 

CITY 30 39 50 20 

ENAME 0 9 20 20 

 

Now by taking first row of Clustered Affinity Matrix (CAM) as input in Valley Based Vertical 

Partitioning Algorithm (VBVPA), two fragments of relation Employee has been found. The 

first fragment contains the attributes ENO and SALARY whereas second fragment has 

attributes CITY and ENAME.  

Below Table 10 and 11 shows the two resulting fragments. 

 

Table 10. 

 

ENO SALARY 

E1 20000 

E2 15000 

E3 25000 

E4 10000 

 

 

Table 11. 

 

CITY ENAME 

NEW 

YORK 

RAM 

LAS 

VEGAS 

SHYAM 

NEW 

YORK 

MOHAN 

CHICAGO SUMIT 
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6. CONCLUSION AND FUTURE SCOPE 
 

In this paper, Valley Based Vertical Partitioning Algorithm has been proposed and has been 

successfully implemented in order to improve the Query Response Time (QRT) in Distributed 

Database. The proposed algorithm VBVPA takes CAM as input and produces the fragmentation 

of a relation. CAM is calculated by using the values of AUM and FM. 

 

The future scope of this proposal is that it may be possible that there can be a long interval 

between two valleys formed in a relation. Hence a new Valley based algorithm is needed to be 

devised in order to minimize the fragments having more number of attributes. 
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