
 International Journal on Integrated Information Management
Vol.01 (2012) DOI: 10.15556/IJIIM.01.02.001

68

The design of kinisis

Euclid Keramopoulosa, Konstantinos Tsekosa, Achilleas Pliakasa, Ignatios
Deligiannisa

a Department of Information Technology, Alexander Technology Educational Institute,

Thessaloniki, Greece

Abstract: XQuery is the standard query language for semistructured data and especially for
XML documents. Based on XQuery, we designed and developed KINISIS, a graphical
XQuery language. In KINISIS we use metaphors, extracted from the road traffic act, in order
to define queries. In this paper we present the design of KINISIS, the metaphors used, the
implementation of KINISIS and the results of a controlled experiment where we assess the
usability of KINISIS against XQuery.

Keywords: Semistructured Data, Graphical XQue

1. Introduction

XML (Extensible Markup Language) (XML, XML 1.0 Recommendation 2008 fifth
edition) is a markup language developed by the World Wide Web Consortium (W3C)
to deliver structured content over the web and to provide a competitive way of
storing data. XML query languages were mainly designed as a solution for retrieving
information from XML documents. Traditional SQL applications can evolve to deal
with XML data using extensions for XML to construct XML data from relational data,
as well as store, query, and retrieve XML data. These extensions form the SQL/XML
(Beza et al., 2007, Funderburk et. Al., 2002) and were mostly used in DBMSs;
however there was a need for purely expression languages to perform this kind of
applications created that led to XML Query languages. More than twenty different
query languages for XML data were introduced. In (Bekiropoulos et al. 2010) an
analytical review is presented for XML Query languages.

On the other hand, the majority of computer users need only to learn how to
complete simple work tasks, whereas the problems they have to solve are usually
expressed in non-computing terms. Nowadays, the main type of user has changed
from the skilled professional to the computer literate (unskilled or naive) user, and
thus the user interface has to be simpler and friendlier. The initiation of graphical
user interfaces, which utilize users cognitive skills and harness, both advances in
graphics technology and increased computing power, simplified and improved the
way users interface with computers and made computer systems accessibly to an
even larger number of users. Currently, graphical user interfaces have become an
essential part of any computer system and system designers have come to accept

INTERNATIONAL JOURNAL ON INTEGRATED INFORMATION MANAGEMENT 69

that in order to improve users’ productivity, it is essential for a user interface to
address users’ skills (Dix et. al., 2004).

Thus, a number of graphical interfaces for XML query languages were developed.
XML-GL (Ceri et. al., 1999, Erwig, 2000) is a graphical query language that depicts
documents and their related Document Type Definition (DTDs) with the use of
graphical representations. Recently, a graphical query language called XQuery By
Example (XQBE) (Braga et. al., 2005) was created, based on XML-GL. In fact, XQBE
implements XQuery 1.0 queries (XQuery 1.0, 2007) with graphical representations.
Xing (Erwig, 2003) is a graphical query language as well as visXcerpt (Fuhr and
Grojohann, 2001, Bry and Berger, 2003, Berger et. al., 2004), which is an extension
of Xcerpt (Bry and Berger, 2003, Berger et. al., 2004). In Bekiropoulos et. al., (2010),
an analytical review of graphical interfaces for XML query languages is presented.
Moreover, a list of features is introduced that a graphical XQuery language should
support as a result of the review.

The structure of this paper is as follows. In section 2, we present KINISIS design
and also we introduce analytically all the metaphors we used in order to represent
the basic features of FLOWR XQuery expression. In section 3, we briefly analyze the
implementation of KINISIS by presenting some examples, and in section 4, we
present the experimental evaluation of KINISIS usability vs XQuery. Finally, in
section V, we draw our conclusion and our future plans regarding KINISIS.

2. Related Work

KINISIS is a graphical query language which is designed on top of XQuery (Pliakas &
Tsekos, 2010). It supports all the XQuery features and it is represented graphically
by a set of “road traffic act” metaphors. XQuery is based on XPath and it “looks for”
the data following a path. In a similar philosophy, we used metaphors in order to
design a graphical XQuery by drawing the path to the requested information,
through the respecting road traffic act signs. The metaphors we used come from
road traffic. We chose this subject because the rules of the road traffic are well
known so we can combine for example a sign of road traffic with a term of XQuery.
Road signs are standard since 1968 when the European countries signed the Vienna
Convention on Road Traffic treaty (Vienna Convention on Road Signs and Signals),
aiming at standardizing traffic regulations in participating countries in order to
facilitate international road traffic and to increase road safety. Part of the treaty was
the Vienna Convention on Road Signs and Signals, which defined the traffic signs
and signals. As a result, in Western Europe the traffic signs are well standardized,
although there are still some country-specific exceptions, mostly dating from the
pre-1968 era.

2.1. KINISIS Metaphors

In this section, we present the metaphors we used for the basic features of XQuery
FLWOR expression.

2.1.1. For

THE DESIGN OF KINISIS 70

Figure 1. The “for” metaphor

A ‘for’ clause sets up an iteration that allows the rest of the FLWOR to be evaluated
multiple times, once for each item in the sequence returned by the expression after
the in keyword. Like the node above, we meet in a road, which oblige us to move in a
circular way.

2.1.2. Let

Figure 2. The “let” metaphor

A ‘let’ clause is a convenient way to bind a variable to a value. Unlike the for clause,
a ‘let’ clause does not result in iteration, it binds the whole sequence to the variable
rather than binding each item in turn. Like this sign which sets up the speed limit
according to the travelling area.

2.1.3. Where

Figure 3. The “where” metaphor

The ‘where’ clause used to specify the criteria that filter the results of a FLWOR
expression. The where clause can reference variables that were bound by a ‘for’ or
‘let’ clause. Like traffic policeman who controls the traffic and decides which cars
can continue their way.

The$design$of$KINISIS$

3

XQuery. Finally, in section V, we draw our conclusion and our future plans
regarding KINISIS.

2. KINISIS DESIGN

KINISIS is a graphical query language which is designed on top of XQuery
(Pliakas & Tsekos, 2010). It supports all the XQuery features and it is
represented graphically by a set of “road traffic act” metaphors. XQuery is based
on XPath and it “looks for” the data following a path. In a similar philosophy,
we used metaphors in order to design a graphical XQuery by drawing the path to
the requested information, through the respecting road traffic act signs. The
metaphors we used come from road traffic. We chose this subject because the
rules of the road traffic are well known so we can combine for example a sign of
road traffic with a term of XQuery. Road signs are standard since 1968 when the
European countries signed the Vienna Convention on Road Traffic treaty
(Vienna Convention on Road Signs and Signals), aiming at standardizing traffic
regulations in participating countries in order to facilitate international road
traffic and to increase road safety. Part of the treaty was the Vienna Convention
on Road Signs and Signals, which defined the traffic signs and signals. As a
result, in Western Europe the traffic signs are well standardized, although there
are still some country-specific exceptions, mostly dating from the pre-1968 era.

2.1. KINISIS Metaphors

In this section, we present the metaphors we used for the basic features of
XQuery FLWOR expression.

2.1.1. For

Figure 1: The “For” metaphor

A ‘for’ clause sets up an iteration that allows the rest of the FLWOR to be
evaluated multiple times, once for each item in the sequence returned by the

The$Design$Of$KINISIS$

4

expression after the in keyword. Like the node above, we meet in a road which
oblige us to move in a circular way.

2.1.2. Let

Figure 2: The “Let” metaphor

A ‘let’ clause is a convenient way to bind a variable to a value. Unlike the for
clause, a ‘let’ clause does not result in iteration, it binds the whole sequence to
the variable rather than binding each item in turn. Like this sign which sets up
the speed limit according to the travelling area.

2.1.3. Where

Figure 3: The “Where” metaphor

The ‘where’ clause used to specify the criteria that filter the results of a FLWOR
expression. The where clause can reference variables that were bound by a ‘for’
or ‘let’ clause. Like traffic policeman who controls the traffic and decides which
cars can continue their way.

The$Design$Of$KINISIS$

4

expression after the in keyword. Like the node above, we meet in a road which
oblige us to move in a circular way.

2.1.2. Let

Figure 2: The “Let” metaphor

A ‘let’ clause is a convenient way to bind a variable to a value. Unlike the for
clause, a ‘let’ clause does not result in iteration, it binds the whole sequence to
the variable rather than binding each item in turn. Like this sign which sets up
the speed limit according to the travelling area.

2.1.3. Where

Figure 3: The “Where” metaphor

The ‘where’ clause used to specify the criteria that filter the results of a FLWOR
expression. The where clause can reference variables that were bound by a ‘for’
or ‘let’ clause. Like traffic policeman who controls the traffic and decides which
cars can continue their way.

INTERNATIONAL JOURNAL ON INTEGRATED INFORMATION MANAGEMENT 71

2.1.4. Return

Figure 4. The “return” metaphor

The ‘return’ clause consists of the return keyword followed by the single expression
that is to be returned. It is evaluated once for each iteration, assuming that the
where expression evaluated to true. The result value of the entire FLWOR is a
sequence of items returned by each evaluation of the return clause. Like the exit
sign of a motorway which leads to our destination.

2.1.5. Order By

Figure 5. The “order by” metaphor

The ‘order by’ clause is used to sort the results and is made up of one or more
ordering specifications, separated by commas, each of which consists of an
expression and an optional modifier. Like a parking, which has the parked cars
sorted according the color of the car, as we can see in this sign.

2.1.6. Count

Figure 6. The “count” metaphor

This function is used to determine the number of items in the sequence, so this sign
counts the current speed of a car, which is travelling in a motorway.

2.1.7. Min

The$design$of$KINISIS$

5

2.1.4. Return

Figure 4: The “Return” metaphor

The ‘return’ clause consists of the return keyword followed by the single
expression that is to be returned. It is evaluated once for each iteration, assuming
that the where expression evaluated to true. The result value of the entire
FLWOR is a sequence of items returned by each evaluation of the return clause.
Like the exit sign of a motorway which leads to our destination.

2.1.5. Order By

Figure 5: The “Order By” metaphor

The ‘order by’ clause is used to sort the results and is made up of one or more
ordering specifications, separated by commas, each of which consists of an
expression and an optional modifier. Like a parking, which has the parked cars
sorted according the color of the car, as we can see in this sign.

The$design$of$KINISIS$

5

2.1.4. Return

Figure 4: The “Return” metaphor

The ‘return’ clause consists of the return keyword followed by the single
expression that is to be returned. It is evaluated once for each iteration, assuming
that the where expression evaluated to true. The result value of the entire
FLWOR is a sequence of items returned by each evaluation of the return clause.
Like the exit sign of a motorway which leads to our destination.

2.1.5. Order By

Figure 5: The “Order By” metaphor

The ‘order by’ clause is used to sort the results and is made up of one or more
ordering specifications, separated by commas, each of which consists of an
expression and an optional modifier. Like a parking, which has the parked cars
sorted according the color of the car, as we can see in this sign.

The$Design$Of$KINISIS$

6

2.1.6. Count

Figure 6: The “count” metaphor

This function is used to determine the number of items in the sequence, so this
sign counts the current speed of a car which is travelling in a motorway.

2.1.7. Min

Figure 7: The “min” metaphor

This function is used to determine the minimum value of the items in the
sequence, as this sign obligates the drivers to travel with the minimum speed of
30km/h.

2.1.8. Max

Figure 8: The “max” metaphor

This function is used to determine the maximum value of the items in the
sequence, as this sign obligates the drivers to travel with the maximum speed of
50km/h.

THE DESIGN OF KINISIS 72

Figure 7. The “min” metaphor

This function is used to determine the minimum value of the items in the sequence,
as this sign obligates the drivers to travel with the minimum speed of 30km/h.

2.1.8. Max

Figure 8. The “max” metaphor

This function is used to determine the maximum value of the items in the sequence,
as this sign obligates the drivers to travel with the maximum speed of 50km/h.

2.1.9. Avg

Figure 9. The “avg” metaphor

This function is used to determine the average value of the items in a sequence, like this sign, which
inform us for the average weight, which should have per axis every truck.

2.1.10. Sum

Figure 10. The “sum” metaphor

This function is used to determine the total value of the items in a sequence. The
symbol of the summation is “+” so we chose this sign that shows us the “+” symbol.

The$Design$Of$KINISIS$

6

2.1.6. Count

Figure 6: The “count” metaphor

This function is used to determine the number of items in the sequence, so this
sign counts the current speed of a car which is travelling in a motorway.

2.1.7. Min

Figure 7: The “min” metaphor

This function is used to determine the minimum value of the items in the
sequence, as this sign obligates the drivers to travel with the minimum speed of
30km/h.

2.1.8. Max

Figure 8: The “max” metaphor

This function is used to determine the maximum value of the items in the
sequence, as this sign obligates the drivers to travel with the maximum speed of
50km/h.

The$Design$Of$KINISIS$

6

2.1.6. Count

Figure 6: The “count” metaphor

This function is used to determine the number of items in the sequence, so this
sign counts the current speed of a car which is travelling in a motorway.

2.1.7. Min

Figure 7: The “min” metaphor

This function is used to determine the minimum value of the items in the
sequence, as this sign obligates the drivers to travel with the minimum speed of
30km/h.

2.1.8. Max

Figure 8: The “max” metaphor

This function is used to determine the maximum value of the items in the
sequence, as this sign obligates the drivers to travel with the maximum speed of
50km/h.

The$design$of$KINISIS$

7

2.1.9. Avg

Figure 9: The “avg” metaphor

This function is used to determine the average value of the items in a sequence,
like this sign which inform us for the average weight which should have per axis
every truck.

2.1.10. Sum

Figure 10: The “sum” metaphor

This function is used to determine the total value of the items in a sequence. The
symbol of the summation is “+” so we chose this sign that shows us the “+”
symbol.

2.1.11. And

Figure 11: The boolean “and” metaphor

A conditional expression which constructed with the operator “and” like
“boolean1 and boolean2” returns true if both of its operands are true. Like in this
sign allows only pedestrians and cyclists to pass across.

The$design$of$KINISIS$

7

2.1.9. Avg

Figure 9: The “avg” metaphor

This function is used to determine the average value of the items in a sequence,
like this sign which inform us for the average weight which should have per axis
every truck.

2.1.10. Sum

Figure 10: The “sum” metaphor

This function is used to determine the total value of the items in a sequence. The
symbol of the summation is “+” so we chose this sign that shows us the “+”
symbol.

2.1.11. And

Figure 11: The boolean “and” metaphor

A conditional expression which constructed with the operator “and” like
“boolean1 and boolean2” returns true if both of its operands are true. Like in this
sign allows only pedestrians and cyclists to pass across.

INTERNATIONAL JOURNAL ON INTEGRATED INFORMATION MANAGEMENT 73

2.1.11. And

Figure 11. The boolean “and” metaphor

A conditional expression, which constructed with the operator “and” like “boolean1
and boolean2” returns true if both of its operands are true. Like in this sign allows
only pedestrians and cyclists to pass across.

2.1.12. Or

Figure 12. The boolean “or” metaphor

A conditional expression, which constructed with the operator “or” returns true if
one or both of its operands is true. Like in this sign we can choose one of the two
ways (left or right route).

2.1.13. If/Else

Figure 13. The “if” metaphor

The expression after the “if” keyword is known as the test expression. It must be
enclosed in parentheses. If the test expression evaluates to true, the value of the
entire conditional expression is the value of the “then” expression. Otherwise, it is
the value of the “else” expression. Like in this sign we can follow the entire route or
to go from an alternative route.

3. Implementation

We have completed the implementation of KINISIS as an end-tool using Java and
Java Swing API. The query construction using KINISIS is supported by a Graphical
User Interface that has a user-friendly approach through drag and drop mechanism.
We designed the GUI in order the users to work on an XQuery Flower philosophy,
with the difference that we replaced all the tricky syntax of XQuery by metaphors

The$design$of$KINISIS$

7

2.1.9. Avg

Figure 9: The “avg” metaphor

This function is used to determine the average value of the items in a sequence,
like this sign which inform us for the average weight which should have per axis
every truck.

2.1.10. Sum

Figure 10: The “sum” metaphor

This function is used to determine the total value of the items in a sequence. The
symbol of the summation is “+” so we chose this sign that shows us the “+”
symbol.

2.1.11. And

Figure 11: The boolean “and” metaphor

A conditional expression which constructed with the operator “and” like
“boolean1 and boolean2” returns true if both of its operands are true. Like in this
sign allows only pedestrians and cyclists to pass across. The$Design$Of$KINISIS$

8

2.1.12. Or

Figure 12: The boolean “or” metaphor

A conditional expression which constructed with the operator “or” returns true if
one or both of its operands is true. Like in this sign we can choose one of the
two ways (left or right route).

2.1.13. If / Else

Figure 13: The “If” metaphor

The expression after the “if” keyword is known as the test expression. It must be
enclosed in parentheses. If the test expression evaluates to true, the value of the
entire conditional expression is the value of the “then” expression. Otherwise, it
is the value of the “else” expression. Like in this sign we can follow the entire
route or to go from an alternative route.

3. Implementation

We have completed the implementation of KINISIS as an end-tool using Java
and Java Swing API. The query construction using KINISIS is supported by a
Graphical User Interface that has a user-friendly approach through drag and
drop mechanism. We designed the GUI in order the users to work on an XQuery
Flower philosophy, with the difference that we replaced all the tricky syntax of
XQuery by metaphors that the user can choose from toolboxes. The results of
the formal experiment that we have conducted in order to evaluate our GUI
(section 4) was quite satisfactory.

The$Design$Of$KINISIS$

8

2.1.12. Or

Figure 12: The boolean “or” metaphor

A conditional expression which constructed with the operator “or” returns true if
one or both of its operands is true. Like in this sign we can choose one of the
two ways (left or right route).

2.1.13. If / Else

Figure 13: The “If” metaphor

The expression after the “if” keyword is known as the test expression. It must be
enclosed in parentheses. If the test expression evaluates to true, the value of the
entire conditional expression is the value of the “then” expression. Otherwise, it
is the value of the “else” expression. Like in this sign we can follow the entire
route or to go from an alternative route.

3. Implementation

We have completed the implementation of KINISIS as an end-tool using Java
and Java Swing API. The query construction using KINISIS is supported by a
Graphical User Interface that has a user-friendly approach through drag and
drop mechanism. We designed the GUI in order the users to work on an XQuery
Flower philosophy, with the difference that we replaced all the tricky syntax of
XQuery by metaphors that the user can choose from toolboxes. The results of
the formal experiment that we have conducted in order to evaluate our GUI
(section 4) was quite satisfactory.

THE DESIGN OF KINISIS 74

that the user can choose from toolboxes. The results of the formal experiment that
we have conducted in order to evaluate our GUI (section 4) was quite satisfactory.

Moreover, we have developed a compiler, which transforms the graphs into
equivalent XQuery structures and send them to the underlying IBM DB2, in order to
execute the XQuery query. In order to present the function of KINISIS the following
three example queries are used.

3.1. Examples of KINISIS

The example queries of KINISIS based on the following running example which has
been taken from (Walmsley, 2007) and includes two XML files. The “catalog.xml” is a
product catalog containing product details for every department of the catalog. The
“prices.xml” keeps all the prices of the products respecting particular dates.

catalog.xml
<catalog>
 <product dept="WMN">
 <number>557</number>
 <name language="en">Fleece Pullover</name>
 <colorChoices>navy black</colorChoices>
 </product>
 <product dept="ACC">
 <number>563</number>
 <name language="en">Floppy Sun Hat</name>
 </product>
 <product dept="ACC">
 <number>443</number>
 <name language="en">Deluxe Travel Bag</name>
 </product>
 <product dept="MEN">
 <number>784</number>
 <name language="en">Cotton Dress Shirt</name>
 <colorChoices>white gray</colorChoices>
 <desc>Our <i>favorite</i> shirt!</desc>
 </product>
</catalog>
prices.xml
<prices>
 <priceList effDate="2006-11-15">
 <prod num="557">
 <price currency="USD">29.99</price>
 <discount type="CLR">10.00</discount>
 </prod>
 <prod num="563">
 <price currency="USD">69.99</price>
 </prod>
 <prod num="443">
 <price currency="USD">39.99</price>
 <discount type="CLR">3.99</discount>
 </prod>
</priceList>
</prices>

INTERNATIONAL JOURNAL ON INTEGRATED INFORMATION MANAGEMENT 75

3.1.1. Example 1.

This query finds all the product names that can be found in Accessory (ACC)
departments. The results are being sorted by the product name.

Figure 14. Example1 in KINISIS

The graphical query in fig. 1 corresponds to the following query:

The first example query is developed in four steps. Every step is represented by a
metaphor:

1. At the beginning the user works on the ‘for’ metaphor and s/he choose the
xml file that the query is based on (catalog.xml).

2. Then, the user apply the query ‘filters’ by applying the predicates as
$product/@dept='ACC', in the WHERE metaphors.

3. The next step is to apply the order criteria in the corresponding metaphor.
4. Finally, the projection of the query is presented in the RETURN metaphor.

3.1.2. Example 2.

This query presents the product number with its price. The two nodes are in
different files, i.e. the product/number is in "catalog.xml” and the price is in
“prices.xml”. Thus, in order to get the correct output the user has to join the two xml
files on the clause: “$product/number = $price/@num”

The$Design$Of$KINISIS$

10

</prices>

3.1.1. Example 1.

This query finds all the product names that can be found in Accessory (ACC)
departments. The results are being sorted by the product name.

Figure 14: Example1 in KINISIS

The graphical query in fig. 1 corresponds to the following query:
for $product in doc("catalog.xml")/catalog/product
where $product/@dept='ACC'
order by $product/name
return $product/name

The first example query is developed in four steps. Every step is represented
by a metaphor:
1. At the beginning the user works on the ‘for’ metaphor and s/he choose the

xml file that the query is based on (catalog.xml).
2. Then, the user apply the query ‘filters’ by applying the predicates as

$product/@dept='ACC', in the WHERE metaphors.
3. The next step is to apply the order criteria in the corresponding metaphor.
4. Finally, the projection of the query is presented in the RETURN metaphor.

The$Design$Of$KINISIS$

10

</prices>

3.1.1. Example 1.

This query finds all the product names that can be found in Accessory (ACC)
departments. The results are being sorted by the product name.

Figure 14: Example1 in KINISIS

The graphical query in fig. 1 corresponds to the following query:
for $product in doc("catalog.xml")/catalog/product
where $product/@dept='ACC'
order by $product/name
return $product/name

The first example query is developed in four steps. Every step is represented
by a metaphor:
1. At the beginning the user works on the ‘for’ metaphor and s/he choose the

xml file that the query is based on (catalog.xml).
2. Then, the user apply the query ‘filters’ by applying the predicates as

$product/@dept='ACC', in the WHERE metaphors.
3. The next step is to apply the order criteria in the corresponding metaphor.
4. Finally, the projection of the query is presented in the RETURN metaphor.

THE DESIGN OF KINISIS 76

Figure 15. Example2 in KINISIS

The graphical query in fig. 2 represents the following query:

In KINISIS, in order to represent the join operation, the XQUERY structure is
followed by using two FLWORs, one embedded in the return clause of the other. The
outer FLWOR returns the list of products, regardless of the availability of price
information. The inner FLWOR selects the price, if it is available.

3.1.3. Example 3.

The query returns the average discount of all products

Figure 16. Example3 in KINISIS

The$design$of$KINISIS$

11

3.1.2. Example 2.

This query presents the product number with its price. The two nodes are in
different files, i.e. the product/number is in "catalog.xml” and the price is in
“prices.xml”. Thus, in order to get the correct output the user has to join the two
xml files on the clause: “$product/number = $price/@num”

Figure 15 example2 in KINISIS

The graphical query in fig. 2 represents the following query:
for $product in doc("catalog.xml")//product
return <product number="{$product/number}">
{ attribute price
 { for $price in doc("prices.xml")//prices/priceList/prod
 where $product/number = $price/@num
 return $price/price}
} </product>

In KINISIS, in order to represent the join operation, the XQUERY structure
is followed by using two FLWORs, one embedded in the return clause of the
other. The outer FLWOR returns the list of products, regardless of the

The$design$of$KINISIS$

11

3.1.2. Example 2.

This query presents the product number with its price. The two nodes are in
different files, i.e. the product/number is in "catalog.xml” and the price is in
“prices.xml”. Thus, in order to get the correct output the user has to join the two
xml files on the clause: “$product/number = $price/@num”

Figure 15 example2 in KINISIS

The graphical query in fig. 2 represents the following query:
for $product in doc("catalog.xml")//product
return <product number="{$product/number}">
{ attribute price
 { for $price in doc("prices.xml")//prices/priceList/prod
 where $product/number = $price/@num
 return $price/price}
} </product>

In KINISIS, in order to represent the join operation, the XQUERY structure
is followed by using two FLWORs, one embedded in the return clause of the
other. The outer FLWOR returns the list of products, regardless of the

The$Design$Of$KINISIS$

12

availability of price information. The inner FLWOR selects the price, if it is
available.

3.1.3. Example 3.

This query returns the average discount of all products.

Figure 16: example3 in KINISIS

The graphical query in fig. 3 represents the following query:
let $result := doc("prices.xml")//prod/discount
return avg($result)

It is often desirable to perform calculations on the groups. For example,
suppose that a user wants to know the sum or the average of the quantities for a
department. This type of aggregation can be performed using the aggregation
functions and KINISIS support all the aggregate function that XQuery supports.

4. Experimental Evaluation of KINISIS usability

We carried out a controlled experiment in order to evaluate the metaphors that
we use in KINISIS and also the language itself. Twenty two undergraduate
students of the Department of Information Technology at Alexander Technology
Educational Institute were participated to compose a few queries using both
IBM DB2 and the KINISIS.

The students found out that the KINISIS application is friendlier to use since
they have to draw the query instead of the classic way of IBM DB2. Due to
some automated parts of KINISIS application, it was easier for the students to
compose the queries avoiding mistakes as wrong path expressions or other
spelling mistakes. This gave the ability to the students to answer in more
complex queries. As a result, there were more correct answers using KINISIS

INTERNATIONAL JOURNAL ON INTEGRATED INFORMATION MANAGEMENT 77

The graphical query in fig. 3 represents the following query:

It is often desirable to perform calculations on the groups. For example, suppose
that a user wants to know the sum or the average of the quantities for a department.
This type of aggregation can be performed using the aggregation functions and
KINISIS support all the aggregate function that XQuery supports.

4. Experimental Evaluation of KINISIS usability

We carried out a controlled experiment in order to evaluate the metaphors that we
use in KINISIS and also the language itself. Twenty two undergraduate students of
the Department of Information Technology at Alexander Technology Educational
Institute were participated to compose a few queries using both IBM DB2 and the
KINISIS.

The students found out that the KINISIS application is friendlier to use since
they have to draw the query instead of the classic way of IBM DB2. Due to some
automated parts of KINISIS application, it was easier for the students to compose
the queries avoiding mistakes as wrong path expressions or other spelling mistakes.
This gave the ability to the students to answer in more complex queries. As a result,
there were more correct answers using KINISIS application (80.91%, 89 correct
answers from 110 queries in total) than IBM DB2 (51.82% correct answers).
Moreover, the time needed from students to compose the queries was much less
when they use KINISIS than IBM DB2.

Finally, students filled questionnaires shown that the metaphors of traffic signs
were suitable to make them understand the construction of XQuery language.

5. Conclusions

In this paper we presented the design, implementation and evaluation of KINISIS, a
new graphical query language for XML documents supporting the XQuery FLOWR
structure. KINISIS uses the road traffic act metaphor in order to represent
graphically the query structure in a common picture as the one when we drive our
vehicle following the traffic signs in order to arrive at our destination. KINISIS
addressed to naive XQuery users. In our future plans is to alter the design of
KINISIS in order to follow a different design philosophy than XQuery FLOWR.

Acknowledgments

The work presented in this paper has been supported by the Research Committee of
Alexander Technology Educational Institute of Thessaloniki under the Research
Support Program 2009 (Π.E.E. 2009).

References

[1] Bekiropoulos K., Keramopoulos E., Beza O., Mouratidis P. (2010). “A list of
features that a graphical XML Query language should support”. International
Journal of Computer Systems Science and Engineering (IJCSSE), 25(5).

[2] Berger S, Bry F, Bolzer O, Furche T, Wieser C., (2004). “Xcerpt and visXcerpt:
Twin query languages for the Semantic”. Proc of Web. 3rd International Semantic
Web Conference (ISWC2004), Hiroshima, Japan.

[3] Beza O, Patsala M. & Keramopoulos E., (2007). “Comparison of XML Support in
IBM DB2, MICROSOFT SQL SERVER and ORACLE”. Proc 2nd International

The$Design$Of$KINISIS$

12

availability of price information. The inner FLWOR selects the price, if it is
available.

3.1.3. Example 3.

This query returns the average discount of all products.

Figure 16: example3 in KINISIS

The graphical query in fig. 3 represents the following query:
let $result := doc("prices.xml")//prod/discount
return avg($result)

It is often desirable to perform calculations on the groups. For example,
suppose that a user wants to know the sum or the average of the quantities for a
department. This type of aggregation can be performed using the aggregation
functions and KINISIS support all the aggregate function that XQuery supports.

4. Experimental Evaluation of KINISIS usability

We carried out a controlled experiment in order to evaluate the metaphors that
we use in KINISIS and also the language itself. Twenty two undergraduate
students of the Department of Information Technology at Alexander Technology
Educational Institute were participated to compose a few queries using both
IBM DB2 and the KINISIS.

The students found out that the KINISIS application is friendlier to use since
they have to draw the query instead of the classic way of IBM DB2. Due to
some automated parts of KINISIS application, it was easier for the students to
compose the queries avoiding mistakes as wrong path expressions or other
spelling mistakes. This gave the ability to the students to answer in more
complex queries. As a result, there were more correct answers using KINISIS

THE DESIGN OF KINISIS 78

Scientific Conference, eRA-2: The Contribution of Information Technology to
Science, Economy, Society and Education, Athens, Greece, 22-23 September.

[4] Braga D., Campi A. and Ceri S., (2005). “XQBE (XQuery By Example): a visual
interface to the standard XML query language”. ACM Transactions on Database
Systems, 30(2), 398 – 443.

[5] Bry F. and Berger S., (2003). “Xcerpt and visXcerpt: From Pattern-Based to
Visual Querying of XML and Semistructured Data”. Proc of 29th International
Conference on Very Large Databases, 1053 – 1056.

[6] Ceri S., Comai S., Damiani E., Fraternali P., et al., (1999). “XML-GL: a Graphical
Language for Querying and Restructuring XML Documents”. Proc 8th
International World Wide Web Conference, 151-165.

[7] Dix A, Finlay J, Abowd G, Beale R (2004). Human Computer Interaction, 3nd
Edition. Europe: Prentice Hall.

[8] Erwig M., (2000). A Visual Language for XML. Proc of IEEE International
Symposium on Visual Languages, 47-54.

[9] Erwig M., (2003). “Xing a visual XML query language”. Visual Languages and
Computing, 14(1), 5–45.

[10] Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C Recommendation,
(26 November 2008). Available through the internet:
http://www.w3.org/TR/xml/ [accessed: 21/11/2011]

[11] Fuhr N. and Grojohann K., (2001). “XIRQL: A Query Language for Information
Retrieval in XML Documents”. Proc of the 24th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, New Orleans,
172-180.

[12] Funderburk J. E., Malaika S., Reinwald B., (2002). “XML programming with
SQL/XML and XQuery”, IBM SYSTEMS Journal, 41(4), 642-665.

[13] Pliakas A. & Tsekos K. (2010). Υλοποίηση εργαλείου γραφικής απεικόνισης της XQuery
(The development of a graphical XQuery tool), Final year project in Greek,
Department of Information Technology, Alexander Technological Educational
Institute of Thessaloniki, Greece.

[14] Priscilla Walmsley, (2007). XQuery. O‘Reilly.
[15] Vienna Convention on Road Signs and Signals. Available through the internet:

http://www.irrationalsigns.com/history-of-road-signs.htm [accessed:
21/11/2011]

[16] World Wide Web Consortium (W3C). Available through the internet:
http://www.w3.org/ [accessed: 21/11/2011]

[17] XQuery 1.0: An XML Query Language (Second Edition), W3C Recommendation
14 December 2010. Available through the internet:
http://www.w3.org/TR/xquery/ [accessed: 21/11/2011]

