
                 International Journal on Integrated Information Management 
Vol.01 (2012) DOI: 10.15556/IJIIM.01.01.005 
 

48 

Database design revisited 

Nikitas N. Karanikolasa, Michael Gr. Vassilakopoulosb 

a Department of Informatics, Technological Educational Institute (TEI) of Athens, Athens, Greece 
b Department of Computer Science and Biomedical Informatics, University of Central Greece, 

Lamia, Greece 

Abstract: Information Systems design is affected by the simplicity of the relational model 
types, though these types do not correspond directly to entities of real applications. In this 
paper, we present another approach, where the Information System designers would be able 
to directly represent the real world in a database model, very close to the Entity- 
Relationship (ER) model. A query and manipulation language that can handle composite 
data types, close to ER diagrams, is the Conceptual Universal Database Language (CUDL). 
We demonstrate that a database modelled by ER diagrams can be directly expressed to the 
CUDL Abstraction Level (CAL), the data model corresponding to CUDL, by a set of rules for 
direct transformation of ER diagrams to CAL. This set consists of a basic set of five rules, 
which is extended with an extra rule that deals with specific situations appearing in 
practical applications. Consequently, the resulting more powerful and composite data can 
be directly maintained with the CUDL. In this way, the development process consisting in 
conceptual design (ER), transformation to Logical Relational Schema, usage of SQL for data 
manipulation/retrieval and the reverse steps to present the results in the conceptual level is 
simplified by conceptual design (ER), transformation to CAL and the usage of CUDL for 
direct manipulation/retrieval of real world (conceptual) structures. 

Keywords: Information Systems Design, Database 

1.   Introduction 

An assumption of a common methodology that is used up to today in the design of 
Information Systems based on relational databases is that we do not know the 
structure of information that we were called to model and manipulate. For this 
reason we begin with interviews of the persons involved in the operation of a non-
computerized system and from this process we arrive in a series of fundamental 
information elements (attributes), grouped in (usually) one and universal relation. 
Then, the specification of a set of functional dependencies among these attributes 
and the decomposition of the set of attributes (through normalization) into smaller 
relations which consist of subsets of the original set of attributes, in order to 
eliminate update anomalies and reduce data redundancy, follow. During data 
manipulation, the combination of attributes through the relational join operator is 
needed. 

The normalization is the process that aims to produce the best from a (by 
nature) weak data model: ―the relational model is limited with respect to semantic 
content (i.e., expressive power) and there are many design problems which are not 



INTERNATIONAL JOURNAL ON INTEGRATED INFORMATION MANAGEMENT 49 

naturally expressible in terms of relationsǁ‖ [20]; ―The relational model is weak 
when showing many-to-one relationshipsǁ‖ [17]. 

However, the real world that we are called to model with an Information System 
(often with the use of a database) seldom incorporates repetitions of data (data 
redundancy). As an example, consider a non-computerized managed library, where 
we do not incorporate multiple series of books (copies) and a corresponding number 
of bookshelves, in order to place the first set of book copies sorted according to the 
title, the second set of book copies sorted according to the first writer, the third set 
of book copies sorted according to the theme category, etc. On the contrary, we do 
not use any ordering (more precisely we use the ordering of books according to the 
date of import into the library) or use some of the orderings that interest us (usually 
thematic) and in addition we create indexes (with cards) for every one of the ordering 
that interest us. Each card contains the key of the classification and a reference to 
the natural ordering (the location of book in the bookshelves). Thus, we claim that 
the Information System design should not decompose the real world in its 
fundamental characteristics, but the Information System designers should be able to 
portray directly the real world in a model that provides more powerful structures 
(through composite data types), as those of the real world. 

To support composite data types, meta-models (metadata schemata and the 
corresponding metadata) are needed. Handling of such (composite data) types by the 
programmer by SQL-like languages and extensions requires knowledge of the 
internal organisation of both metadata and data, unless a data manipulation 
language able to manipulate directly the composite data types is employed. The 
Conceptual Universal Database Language (CUDL) is such a language. We 
demonstrate that a database modeled by Entity-Relationship (ER) diagrams can be 
directly expressed to the CUDL Abstraction Level (CAL,) the data model 
corresponding to CUDL, by a set of rules for direct transformation of ER diagrams to 
CAL. This set consists of a basic set of five rules (first presented in [12]), that is 
extended with an extra rule (first presented in [13]) that deals with specific 
situations appearing in practical applications. Consequently, the resulting more 
powerful and composite data can be directly maintained with the CUDL language. In 
this way, the development process consisting in conceptual design (ER), 
transformation to Logical Relational Schema, usage of SQL for data 
manipulation/retrieval and the reverse steps to present the results in the conceptual 
level is simplified by conceptual design (ER), transformation to CAL and the usage of 
CUDL for direct manipulation/retrieval of real world (conceptual) structures. In this 
paper, we present an enhanced revisiting of the whole database design process, 
based on the rules presented in [12, 13], using examples that demonstrate the 
benefits for the database designer of using real- world data types. 

The organization of the paper is as follows. Section 2 provides a review of data 
models that were proposed to overcome weaknesses of the relational model. 
However, having more powerful database models, but still using data manipulation 
languages designed only for fundamental data attributes, is a waste of time and 
resources. Therefore, in Section 3, we present the basic ideas related to CUDL and 
its abstraction level, CAL [9, 10, 11, 22]. The transformation from CAL to FDB 
(meta-model, [21, 23]) has been studied in [9, 11]. In Section 4, we present the 5 
Rule Set for Transformation from ER to CAL [12] (dealing with the most common 
cases that appear in real life applications, for the transformation from ER diagrams 
to CAL), while in Section 5, we present the addition of an extra rule that is needed 
for the transformation of a relation between a weak and a strong (not identifying) 



DATABASE DESIGN REVISITED 50 

entity that also has attributes. Section 6 concludes the paper and presents future 
research possibilities. 

2.   Related Work 

2.1.   Generic Data Modeling 

The Generic Data Modeling [4,8] approach is an outcome mainly emanate from 
research in the Medical Informatics domain. The fact that, in case of Health Care 
data maintenance, the amount of information and the complexity of information lead 
to a huge (Daedal / mazy) conceptual schema, concerned the Medical Informatics 
scientists. Moreover, the fact that the direct production of a logical schema for a 
relational DBMS, from a given huge conceptual schema, obviously conserve this 
Daedal characteristic, gave raise for research for alternative data modeling 
approaches. Another inherent characteristic of relational logical schemata is the 
difficulty for supporting data evolution (changing information needs). The research 
results for both problems (Daedal conceptual and logical schema and difficulty for 
data evolution in relational data) reveal the generic data modeling approach. This 
approach defines two generic transformations (namely ―flatteningǁ‖ and ―relation 
mergingǁ‖). The later transformation (―relation mergingǁ‖) is also the basis for 
supporting data evolution. These transformations, when applied to the original 
conceptual schema, produce a generic logical schema consisted of a reduced 
number of tables. However, this process is not a very strict procedure and actually it 
is depended from (the personal perception and) the choices made by the person who 
guides the process and applies the mentioned generic transformations. The final 
number of tables, as the outgrowth of the transformation process, is dependent from 
the choices made and is not a concrete (predefined) set of tables (as happens in 
other cases, e.g. in the FDB data modeling). 

The disadvantage of Generic Data Modeling is that querying the resulting generic 
logical schema with standard SQL requires multiple statements and considerable 
intellectual effort, especially when the queries are intended to retrieve data for 
feeding data analysis tasks (e.g. feeding data mining applications). To overcome such 
difficulties, researchers have defined the Extended Multi-Feature (EMF) SQL 
extension [7] that provides simpler to understand, more compact and more efficient 
query constructions. 

2.2.   EAV Data Modeling 

The Entity Attribute Value (EAV) data modeling [15,16] is also an outcome from 
research in the Medical Informatics domain. The motivation for the research that 
revealed the EAV data modeling was that, in the medical domain, the number of 
parameters (facts) that potentially apply to any clinical study is vastly more than the 
parameters that actually apply to an individual clinical study. For example, the 
potential number of laboratory examinations that a patient could be submitted to is 
a huge superset of the actually submitted examinations in a specific medical case 
(e.g. a patient suffering from a bilestone). Another reason, that motivated the 
research that revealed the EAV data modeling, was that clinical studies are subject 
to evolution as a result of medical research. As a consequence, the number of 
clinical parameters related to a clinical study is always differentiated (and, in most 
cases, are increased). Thus, the data model should be able to host new clinical 
parameters for any clinical study, without the need for data (structure) 
reorganization. The research, motivated by the above-mentioned reasons, revealed 



INTERNATIONAL JOURNAL ON INTEGRATED INFORMATION MANAGEMENT 51 

the EAV data modeling. According to EAV design, metadata and data tables 
compose the logical database schema. The facts (that actually apply to a clinical 
study) are recorded into the data tables, as a triplet: the Entity, the Attribute and 
the Value. The Attribute is the recorded fact (clinical parameter) and the Entity is a 
composition of the relevant patient‘s identifier and some timestamp. The metadata 
tables are used to define the data composition (which clinical parameter, i.e. 
Attribute, pertains to which clinical study). 

There are three main versions of the EAV data modeling [1] but all of them share 
the same basic principle (the triplet: Entity / Object, Attribute, Value). Another 
interesting feature of the EAV models is that they permit mixture of EAV stored and 
conventionally stored data. However, the existence of this heterogeneity complicates 
significantly the task of data querying. We should also mention that the EAV data 
modeling support facts evolution (equivalent to the addition columns in a relational 
table without the need for any reorganization) but does not support table (entity) 
evolution. 

2.3.   FDB Data Modeling 

In previous works (by Yannakoudakis et al.) [21,23] there has been an investigation 
of dynamically evolving database environments and corresponding schemata, 
allowing storage and manipulation of a variable number of fields per record, variable 
length of fields, composite fields (fields having subfields), multiple values per field 
(either atomic or composite), etc. The ultimate goal of the research work of 
Yannakoudakis et al. was to make the design and maintenance of a database a 
simpler task for database designers, so as that they will not have to put in a lot of 
effort to design the database and later they will not have to pay special attention and 
work for database changes. Their research proposed a new framework for the 
definition of a universal logical database schema that eliminates completely the need 
for reorganisation at both logical and internal levels, even when major modifications 
of the database requirements have occurred. This new framework was called Frame 
Database Model (FDB) [23]. 

This Universal logical database schema is based on well and strictly defined set 
of Metadata and data tables and it does not permit any mixture with conventionally 
stored data. All the entities that are available to the user, along with their attributes, 
are documented exclusively in the metadata tables and the facts concerning the 
instances of the entities are recorded exclusively in the data tables of the FDB 
Universal schema. Another noteworthy feature of FDB is that it supports Schema 
evolution, both for facts and entities. 

Moreover the FDB model allocates ways of imprinting strictly connected (Hardly 
related) information with innate (inherent/native) mechanisms, in contrast to the 
relational model that compels the creation of artifact structures (tables) to represent 
strictly connected (Hardly related) data. As an example, the relational model requires 
the creation of new table to store data that relate of the form one-to-many (the 
addresses or the telephones of customer). In contradiction to the relational model, 
the FDB model can maintain the same information with a field that is 
accommodated in the side of the ―oneǁ‖ and accepts multiple values. Even more 
complex forms of strictly connected (Hardly related) information, are impressed, in 
the FDB model, with innate (inherent/native) mechanisms. For example a 
correlation of information with a form many-to-many (as are the DVDs that have 
been rented to a member of a Video Club) is maintained in one of the two connected 
sides without requiring the creation of a new table to correlate the information. That 
is to say, in the many-to-many correlations we follow a mechanism that emanates 



DATABASE DESIGN REVISITED 52 

from the real world (in the example of the Video Club we maintain inside the card 
of a customer a table with his/her renting of DVDs). 

The most important fact in the FDB model is that it organizes information 
without any repetition of values. In order to be more precise, not only it does not 
proceed in repetitions but it ensures that these cannot be created. In the example of 
the addresses (or alternatively the telephones) of a customer the basic data of a 
customer (let us say name, surname and code) are stored once and all the different 
addresses that the customer may have are stored in the field addresses. That is to 
say, the use of a single big (universal) table to store/repeat as many times the basic 
attributes of a customer (name, surname and code) as the number of his/hers 
addresses is avoided naturally (without any effort). Thus the FDB model provides as 
an inherent feature the no redundancy property. 

2.4.   Not First Normal Form (NF2) or Nested Relational Data Modeling 

The motivation for developing the Nested Relational data model was the fact that the 
Relational model has difficulties of modeling the real world; It is also inconvenient 
for handling even simple data structures commonly used in Information Retrieval. 
To overcome these problems, Researchers have proposed a relational model where 
Non First Normal Form (NF2) relations are allowed [18]. This extension encompasses 
the classical 1st Normal Form (1NF) model and adds, to the relational algebra, two 
basic operators (namely “nest” and “unnest”). Based on the “nest” operator, this 
proposal allows sets (as the result of “one-attribute” nest operation) and sets of sets 
(as the result of “multi” attributeǁ‖ nest operation) as attribute values. NF2 sets are 
equivalent to simple FDB fields with repetitions and NF2 sets of sets are equivalent 
to composite FDB fields with repetitions. The researchers have also proposed a 
query language extension for NF2 table definition and manipulation. However, the 
NF2 presents some weak points: 

• It does not support Entity or Fact (Attribute) evolution 
• It does not have Universal logical schema 
• The proposed query language extension only undertakes (be engaged in) 

Retrieval statements 
• This Retrieval statements are rather suggestions or hypothetical statements 

and are not parts of a mature language that handles relational tables with 
non-atomic (sets and sets of sets as) attribute values 

• The notion that governs the whole idea, which has passed through and is 
reflected by the proposed query language extension, is that the subfields (of 
composite fields) are not directly accessed by the user. 

• Related to the previous point is that the proposed query language uses 
Nested Select statements, whenever a restriction over a subfield should be 
applied 

Possibly, these weak points have the consequence that, after 29 years, Non First 
Normal Form does not seem to be implemented as a DBMS. However, some 
researchers are still interested [19] and define languages supporting the eXtended 
NF2 (XNF2) model. 

2.5.   Object Oriented and Object Relational Databases 

The weakness of the relational model to manage complex, highly interrelated 
information motivated the research for Object Databases (ODB) and Object 
Relational Databases (ORDB). Both models are also described in textbooks (for 
example Elmasri and Navathe, 2000 [5]). 



INTERNATIONAL JOURNAL ON INTEGRATED INFORMATION MANAGEMENT 53 

The portability and interoperability of ODBs is ensured by the Object Model 
suggested by the Object Database Management Group (ODMG). The ODMG Object 
Model provides also the definition for an Object Definition Language (ODL) and an 
Object Query Language (OQL). The ODL statements seem to (or are influenced by) 
the Java language statements used for class definitions, while the OQL statements 
seems to (or are influenced by) the SQL statements used for data retrieval. At mid of 
the 1990‘s decade there were a notable number of ODB solutions, but today only 
half of those remain active. Our personal opinion is that the data management 
professionals do not like to bother themselves with strange programming 
constructions of classes, inheritance, etc., and consequently they do not decide 
easily to use an ODB. 

The other direction, the Object Relational Databases, aim to provide solutions for 
complex and highly interrelated information management, without imposing 
complicated programming constructions. For this reason, they provide Black Box 
Complex data types for various purposes (management of time series, geographic 
point manipulations, face recognition, content-based retrieval of digital audio, image 
watermarking, image search, full-text search), Opaque types for extending the 
repertoire of Black Box Complex data types and User Defined Complex data types. 
Black Box Complex data types are named as Data Blades in Informix Universal 
Server and are named as Cartridges in Oracle. The User Defined Complex data types 
have similar characteristics to the ODMG Objects. The composition of User Defined 
Complex data types is based on simpler structures (namely: the Collection types and 
the Row types). The SQL3 standard provides an extension to the previous SQL 
standards, for handling the most of the characteristics added with the ORDBs. 

2.6.   Approaches based on Semantic Web technology 

The purpose of Semantic Web is to share and reuse knowledge. The associated 
concepts, Web standards and query languages allow storing, querying and 
reasoning. Reasoning is a common-sense query processing and it requires a small 
number of deductions, in order to answer some query. To support the common-
sense query processing, any Semantic Web system must be provided with a set of 
rules of deduction. However, Semantic Web is not designed with the intention of 
handling information efficiently and effectively, as Databases are. 

There exist approaches that combine the Semantic Web information technology 
and the Database information technology. One of the goals of these combinations is 
the interoperability of Semantic Web representations (Ontologies) and Databases [3]. 
Underneath of this interoperability is the translation of schemas from one 
information technology to the other [2]. The Relational data model and also the 
Functional data model have been used as the representatives of the Database 
technology, in these approaches of information technology combinations [3,14]. The 
Resource Description Framework (RDF) and its associated Query Language 
(SPARQL) are the most used representatives of the Semantic Web, in these 
approaches of information technology combinations. 

One of the purposes of this paper is to support a richer, than the Relational, 
data model, while the application developer, that uses this model, does not face 
complications in analysis, design and data manipulations. Our belief is that, the 
freedom of more complex data, that the Semantic Web information technology 
(through Ontologies) offers, operates against the efficiency, maintainability and 
simplicity of an application development oriented system. 

 



DATABASE DESIGN REVISITED 54 

3.   The Conceptual Universal Database Language 

It is obvious from the plethora of models (presented in the previous section) that 
there is a need for a DBMS able to provide more powerful data types, as those of the 
real world complex data. In the first four discussed models, handling of such types 
by the programmer by SQL-like languages and extensions requires knowledge of the 
internal organization of both metadata and data [12]. Thus, the ultimate goal should 
be to provide a data manipulation language able to manipulate directly the 
composite data types (without bothering the programmer with internal organization 
details), while permitting the direct expression of restrictions over subfields. 

In the approach that we have adopted, the FDB [21, 23] is the underlying model 
for implementing our goal for a data manipulation language able to manipulate 
directly composite data types. We preferred the FDB model [10], since it is more 
compact and well defined than the other models and also support schema evolution. 
Karanikolas et al. [9, 11], introduced the syntax and semantics of the CUDL, a 
database language (both DDL and DML for the FDB model) that supports composite 
data types, i.e. attributes (tags in CUDL terminology) that combine more than one 
other sub-attributes (subfields in CUDL terminology). It also supports the existence 
of multiple values (repetitions) for both tags and subfields. The key difference of 
CUDL to other approaches is that not only tags, but also subfields and repetitions 
can be addressed in the CUDL statements. That means that the users can express 
retrieval restrictions over a specific subfield or can express the modification of a 
specific subfield in a specific repetition of some tag, etc. In [9], the authors focused 
mainly in presenting and analyzing the statement of value retrieval (in the schema 
and the data). More recently [11], they focused mainly in presenting and analyzing 
the CUDL statement of value modifications in the schema (schema changes) and the 
data. They also have undertaken the need for relationship declarations [10]. This 
need becomes more significant for the FDB- CUDL model, because the relationships 
between entities, in most cases, are implemented without the introduction of new 
tables. Without having methods to declare relationships, the user would face a 
refuting stage, where the model is self-explained (the user can consult only tag 
attributes and subfield attributes and carry off the data model) but the data 
relationships are totally undocumented. To cope with this need, the FDB model 
introduced the Authority links set. They also use the Authority links set to declare 
authority controls and reduce variability of expressions used for the same instance 
of an identity. All of these (relationship declarations and authority control 
declarations) are provided through CUDL statements. 

Apart from being a data manipulation language able to manipulate directly 
composite data types, while permitting the direct expression of restrictions over 
subfields, CUDL allows the application programmer/designer to model the 
structures of its application with composite data types that are closer to the ER 
diagrams and sometimes without any decomposition of the ER entities into simpler 
ones (an example is depicted in [12]). 

On the other hand the logical database level of any CUDL based application is 
the underlying FDB model. Thus, instead of transforming from ER to simple 
relational tables to provide a logical model for manipulation through SQL, we are 
able to transform from ER to CUDL Abstraction Level (CAL) entities (namely, CUDL 
data sets with composite data types). In other words, the classic database design 
triplet (ER, logical and physical design) is replaced by the quadruple: ER, CAL, 
logical and physical design, with a fixed logical design (the FDB model). 

CAL is a model that supports collections of uniform (congenerous) instances 
(frame objects in CAL terminology). The structure of each instance (of a concrete 



INTERNATIONAL JOURNAL ON INTEGRATED INFORMATION MANAGEMENT 55 

collection) is a set of attributes (tags in CAL terminology). In contrast to the 
relational model, attributes (tags) can have either simple (predefined) data types or 
can be composed by a set of sub-attributes (subfields in CAL terminology). CAL 
model also supports the existence of multiple values (repetitions) for both tags and 
subfields. Each CAL collection of uniform (congenerous) instances is called entity 
(also called ―abstract entityǁ‖ for reasons explained in [11]). The CUDL language is a 
database language for defining (DDL) and handling (DML) CAL entities. 

Given the above characteristics of CUDL and FDB, it is explained why somebody 
would prefer to use a CUDL-DB versus an ORDB. The main advantages of CUDL-DB 
are: 

• schema evolution, 
• not unused fields (zero repetitions make unneeded the use of null values), 
• several real world constructions are neither so complex as to demand data 

blades (and other extended capabilities of ORDBs), nor natively supported by 
the relational model (e.g. more than one telephone numbers of a customer 
require two tables with an 1:M relationship); these ―intermediateǁ‖ (neither 
simple, nor complex) data constructions do not bother the programmer and 
are natively supported in CUDL and CAL. 

It is obvious, from the above explanation, that the transformation from ER entity 
types to CAL entities is a direct mapping. However, the transformation from ER 
relationship types to CAL structures is a more complicated process and we are going 
to consider it in the next section. 

4.   The 5 Rule Set for Transformation from ER to CAL 

4.1.   A Transformation Example 

In order to make more evident the need for designing in upper levels we will provide 
an example of a really complicated ER (corresponding to a real situation) and its 
transformation to CAL entities (CUDL data sets with composite data types). We are 
going to present an Electronic Patient Record (EPR) that could be maintained in a 
real Hospital Information System (HIS). A brief description of our HIS follows: 

• One patient can have one or more incidents treated in the hospital. 
• During an incident the patient can be subject of a series of laboratorial 

examinations and also can be subject of a series of radiological examinations. 
• During an incident the patient can be subject of zero or more operations 

(surgeries). 
• There are a number of doctors (servant physicians) for each incident. 
• Moreover, there are a number of doctors (surgeons, anaesthesiologists, etc) 

that participate in each operation. 
• Each incident is characterized by a Social Security Institute (that undertakes 

the hospital fees – cover the expenses) and a diagnosis (final diagnosis of the 
incident). 

The ER diagram of Figure 1 is detailed conceptual depiction of the HIS – EPR 
database. According to the ER diagram of Figure 1, there is a binary relationship 
between the Incident and the “Laboratorial Examination” entity types with 
cardinality ratio M:N. A similar binary relationship between the Incident and the 
“Radiological Examination” entity types, with cardinality ratio M:N, is also depicted. 
A third binary relationship with cardinality ratio M:N exists for the Incident and the 
Doctors entity types. This relationship is responsible for the servant physicians of 
the incident. The unique ternary relationship of the ER diagram is an identifying 
relationship of the weak entity type “Incident Operation”. There are two owner entity 



DATABASE DESIGN REVISITED 56 

types that identify the weak entity type “Incident Operation”. These are the 
Incident and the Operation entity types. There is a binary relationship, with 
cardinality ratio M:N, between the weak entity type “Incident Operationǁ‖” and the 
(strong) entity type Doctors. The later relationship expresses the set of doctors 
(surgeons, anesthesiologists, etc.) that participate in each “Incident Operation”. 

Next, we will provide the CAL entities that the ER diagram of Figure 1 is 
transformed. The CAL entities are (for composite and multivalued attributes, () and {} 
are used, respectively, Subsection 3.3.1 of [5]): 
Incident 
Incident_code, Date_started, Date_ended, Patient_code, SSI_code,  
{Lab_examinations (LE_code, LE_datetime, LE_result)},  
{Rad_examinations (RE_code, RE_datetime, RE_FilePath)}, 
{Incident_operations (Operation_code, IO_datetime_started, IO_datetime_ended, 
{IO_doctors})}, 
{Incident_doctors}, Diag_code. 
Doctor 
Doctor_code, name, surname. 
Operation 
Operation_code, name, cost. 
Rad_Examination 
RE_code, description, type, cost. 
Lab_Examination 
LE_code, name, normal_values, cost. 
Patient 
Patient_code, name, surname, father_name, tax_registration_number, date_of_birth. 
Social_Security_Institute 
SSI_code, name, immediate_insured_rate, intermediate_insured_rate. 
Diagnosis 
Diag_code, description, type. 

Figure 2 portraits a CAL frame object (instance) for the entity “Incident”, while 
Figure 3 portraits some CAL frame objects (instances) for the entity type “Doctor”. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



INTERNATIONAL JOURNAL ON INTEGRATED INFORMATION MANAGEMENT 57 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 72 

Figure 1. The ER diagram of the HIS-EPR. 
 



DATABASE DESIGN REVISITED 58 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2.   The Basic Transformation Rule Set 

The rules for transforming from (relationships types of) ER diagrams to CAL entities 
(at least for the cases that appear mostly in real applications, like those needed for 
transforming from the ER of Figure 1 to the CAL entity Incident) that were presented 
in [12] are the following: 

Rule1. Binary relationships with cardinality ratio M:N can be hosted in one of 
the two related entities as a tag (field) with repetitions. In case that the relationship 
has no attributes, a simple (not composite) tag with repetitions is capable to store 

 73 

 

Incident_code S001 
 

Date_started 13/5/2007 
 

Date_ended 20/5/2007 
 

Patient_code A001 
 

SSI_code T001 
 

Incident_doctors I001 
 I002 
 I079 
 

Diag_code 574 
 

Incident_ 
operations 

Operation_ 
code 

IO_ 
datetime_started 

IO_ 
datetime_ended 

IO_ 
doctors 

 E002 14/5/2007 13:35 14/5/2007 15:05 

I001 
I005 
I100 
I065 

 E015 16/5/2007 12:00 16/5/2007 13:00 
I012 
I100 
I032 

 

Lab_ 
Examinations 

LE_ 
code LE_datetime LE_result 

 UREA 15/5/2007 10:00 32,4 mg/dl 
 UREA 15/5/2007 14:30 32,5 mg/dl 
 UREA 16/5/2007 08:00 31,6 mg/dl 
 CREA 15/5/2007 10:00 1,17 mg/dl 
 CREA 16/5/2007 08:00 1,08 mg/dl 
 PROT 15/5/2007 10:00 7,19 g/dl 
 PROT 16/5/2007 08:00 6,95 g/dl 
 

Rad_ 
Examinations RE_code RE_datetime RE_FilePath 

 U/S Kidney 16/5/2007 12:00 \\FS1\RIS\ Uaz34.tif 
Figure 2. An Incident CAL frame object. 
 

 

Doctor_code I001 
 

name Michael 
 

surname Garidopoulos 
 

(a) 
 

Doctor_code I005 
 

name Paul 
 

surname Alexiou 
 

(b) 
 

Doctor_code I012 
 

name … 
 

surname … 
 

(c) 

 

Doctor_code I032 
 

name … 
 

surname … 
 

(d) 
 

Doctor_code I065 
 

name … 
 

surname … 
 

(e) 
 

Doctor_code I100 
 

name … 
 

surname … 
 

(f) 
Figure 3. Some Doctor CAL frame objects. 



INTERNATIONAL JOURNAL ON INTEGRATED INFORMATION MANAGEMENT 59 

the primary key values of the related (hosted) entity. Whenever the relationship 
has attributes, a composite tag (composed of the primary key values of the hosted 
entity and the relationship‘s attributes) with repetitions should be used. Obviously, 
the key of the hosting participant is not needed. 

This rule applies for the relationship between the Incident and the “Laboratorial 
Examination” entity types and for the relationship between the Incident and the 
Doctor entity types. Since we have selected to host the relationships in the Incident 
entity type, the former relation is implemented with the following composite tag with 
repetitions: 

{Lab_examinations (LE_code, LE_datetime, LE_result)}. 
For the same reason, the later relation is implemented with the following simple 

tag with repetitions: 
{Incident_doctors}. 
Rule 2. Binary identifying relationships can be transformed to a composite tag 

with repetitions, hosted in the owner entity type. In this case, the composite tag 
should be composed by the partial key (of the weak entity) and the rest attributes of 
the relationship. Obviously, the key of the hosting owner entity is not needed. There 
is no application of this rule in the studied ER diagram. 

Rule 3. The previous rule can be extended for ternary identifying relationships. 
Ternary identifying relationships can be transformed to a composite tag with 
repetitions, hosted in one of the (two) owner entity types. In this case, the composite 
tag should be composed by the partial key (of the weak entity type), the key of the 
hosted owner entity type and the rest attributes of the relationship. Obviously, the 
key of the hosting owner entity type is not needed. 

This rule applies for the weak entity type �Incident Operation�. Since we have 
selected to host the relationships in the Incident owner entity type, the relation is 
implemented with the Incident operations composite tag with repetitions: 

{Incident operations (Operation code, IO_datetime_started, IO_datetime_ended, 
{IO_doctors})} 

The partial key of the weak entity type participates in the Incident_operations as 
the IO_datetime_started subfield. The key of the owner entity type Operation 
participates in the Incident operations as the Operation code subfield. The subfield 
IO_datetime_ended is an attribute of the relationship. The role of the IO_doctors 
subfield will be explained with the next rule. 

Rule 4. Binary relationships with cardinality ratio M:N, relating a weak entity 
type with some other (strong) entity type, without having relationship attributes, can 
be transformed to an extra subfield with repetitions of the composite tag 
implementing the weak entity. This rule applies for the relationship between the 
weak entity type �Incident Operation� and the entity type Doctor. 

This rule explains the last constituent of the Incident operations tag, presented 
above. (The domain of {IO_doctors} is the power set of the Doctor code’s domain.) 

Rule 5. Binary relationships with cardinality ratio 1:N can be hosted in the N- 
side entity type, as a tag (field) without repetitions. In case that the relationship has 
no attributes, a simple (not composite) tag is enough for storing the primary key 
values of the opposite-side entity type. Otherwise, whenever the relationship has 
attributes, a composite tag should be used. The primary key of the opposite- side 
entity type and the relationship‘s attributes composes this composite tag. Obviously, 
the key of the hosting (N-side) participant is not needed. 

This rule applies for the relationships of the Incident with the entity types 
Patient, “Social Security Institute” and Diagnosis, respectively. The tags 



DATABASE DESIGN REVISITED 60 

Patient_code, SSI_code and Diag_code of the CAL entity Incident implement these 
relationships. 

Actually, the rules presented above are also responsible for updating the foreign-
key constraints. 

4.3.   The Equivalent Relational Model 

The relational model that corresponds to the ER diagram of Figure 1 is depicted in 
Figure 4. The entities of this ER diagram are directly mapped into relational model 
relations / tables, but the inter-entity relationships of the ER diagram are 
represented in the relational schema through foreign keys and extra relations / 
tables (in the case of M:N relationships). This representation is not obvious for the 
designer of the ER diagram and expressing queries of the real-world problem in the 
language that manipulates the relational model (e.g. SQL) is unnatural and not 
simple. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

5.   The Extra Transformation Rule 

In the following we will provide an extension of the above set of rules. We are going 
to provide a rule that applies in a specific subcase of relation between entity types, 
because this subcase uncovers the barriers of the underlying Frame DataBase (FDB) 
model [23]. The FDB model permits the use of composite data types, but not in any 
(arbitrary) depth, as the Nested Relational model [6, 18] permits. This was a key 
decision, since the FDB model should be accompanied with a data manipulation 
language, CUDL [9, 11], able to directly manipulation of the provided composite data 
structures. 

5.1.   The Modified Conceptual Model 

In the following conceptual (ER) diagram (Figure 5), we introduce two attributes that 
characterize the participation of a physician (doctor) to the weak entity “Incident 
Operation”. 
 
 
 
 
 
 

 76 

4.3.   The Equivalent Relational Model 

The relational model that corresponds to the ER diagram of Figure 1 is depicted 
in Figure 4. The entities of this ER diagram are directly mapped into relational 
model relations / tables, but the inter-entity relationships of the ER diagram are 
represented in the relational schema through foreign keys and extra relations / 
tables (in the case of M:N relationships). This representation is not obvious for 
the designer of the ER diagram and expressing queries of the real-world problem 
in the language that manipulates the relational model (e.g. SQL) is unnatural and 
not simple. 
 

Figure 4. The relational model corresponding to the ER diagram of the HIS-EPR. 

5.   The Extra Transformation Rule 

In the following we will provide an extension of the above set of rules. We are 
going to provide a rule that applies in a specific subcase of relation between 
entity types, because this subcase uncovers the barriers of the underlying Frame 
DataBase (FDB) model [23]. The FDB model permits the use of composite data 
types, but not in any (arbitrary) depth, as the Nested Relational model [6, 18] 
permits. This was a key decision, since the FDB model should be accompanied 
with a data manipulation language, CUDL [9, 11], able to directly manipulation 
of the provided composite data structures.  

5.1.   The Modified Conceptual Model 

In the following conceptual (ER) diagram (Figure 5), we introduce two 
attributes that characterize the participation of a physician (doctor) to the weak 
entity  “Incident  Operation”. 



INTERNATIONAL JOURNAL ON INTEGRATED INFORMATION MANAGEMENT 61 

The new attributes, introduced in figure 5, are:  
part_begin representing the date and time that the participation of the doctor to the 

incident operation started, 
part_end  representing the date and time that the participation of the doctor to the 

incident operation finished. 
These attributes define the duration of participation of a doctor in some specific 

operation that is accomplished during some incident. In other words, the user 
requirements demand not only to document the participation of doctors in incident 
operations, but also to document when the doctor gets involved and when he/she 
backs off the operation. 

 77 

 

 
Figure 5. The modified ER diagram of the HIS-EPR. 



DATABASE DESIGN REVISITED 62 

5.2.   Handling attributes relating a weak with a strong entity type 

The following rule handles the translation of a relation between a weak and a 
strong (not identifying) entity that has attributes: 

Rule 6. Binary relationships with cardinality ratio M:N, relating a weak entity 
type with some other (strong) entity type, having relationship attributes (assume k 
attributes), can be transformed to an extra subfield of the composite tag 
implementing the weak entity. This extra subfield will not have repetitions and 
should have unique values in the range of the whole set of frames of the strong 
identifying entity. Moreover another composite tag with k+1 subfields and permitting 
repetitions should be introduced in the related (strong) entity type. The relationship 
(k) attributes, together with the unique value of the extra subfield of the composite 
tag that implements the weak entity will combined to form the (k+1) subfield values 
of some repetition of the new composite tag of the related (strong) entity. 

This rule applies for the relationship between the weak entity type “Incident 
Operations” and the entity type Doctor. 

5.3.   The modified Incident and Doctor entity type 

In contrast to Rule 4, Rule 6 requires the creation of identifiers for each instance of 
the weak entity of the relation and the storage of these identifiers into the frames 
(instances) of the strong (not identifying) related entity. This could be an alternative 
solution in case of a relation (between a weak entity type and a strong – not 
identifying – entity type) without attributes. This is the only solution when the 
relation (between the weak entity type and the strong – not identifying – entity type) 
has attributes. 

The following are the CAL structures of the strong – identifying – entity type 
“Incident” that hosts the weak entity type “Incident Operation” and the strong – not 
identifying – entity type “Doctor”. The modifications (in relation to the previous 
versions of the same entity types) are emphasized. 
Incident 
Incident_code, Date_started, Date_ended, Patient_code, SSI_code,  
{Lab_examinations (LE_code, LE_datetime, LE_result)},  
{Rad_examinations (RE_code, RE_datetime, RE_FilePath)},  
{Incident_operations (Operation_code, IO_datetime_started,  
IO_datetime_ended, IO_ID)}, 
{Incident_doctors}, Diag_code. 
Doctor 
Doctor_code, name, surname, 
{Operations_participated (IO_ID, part_begin, part_end)}. 

Figure 6 portraits a CAL frame object (instance) for the entity “Incident”, while 
Figure 7 portraits some CAL frame objects (instances) for the entity type “Doctor”. 

5.4.   Enforcement of data validation 

The declaration of relationships between data structures is one of the most 
significant tools for the enforcement of data validation procedures in any database 
model. The relational model (through its language SQL) has introduced methods 
(constraint statements or sub-statements) that permit the declaration of 
relationships. 

In CUDL the declaration of relationships between data structures is maintained 
in an FDB table (table of the FDB universal logical database schema) named 
Authority_Links [10]. The structure of this table is the following: 



INTERNATIONAL JOURNAL ON INTEGRATED INFORMATION MANAGEMENT 63 

Authority_links (from_entity, from_tag, from_subfield, to_entity, to_tag, to_subfield, 
relationship_type) 

For example, the M:N relationship between the entity type “Incident” and the 
entity type “Doctor” is declared in the following way: 
(‘Incident’,  ‘Incident_doctors’, null, ‘Doctor’, ‘Doctor_code’, null, 1) 

The last attribute in the previous row of the Authority_links table is the integer 
value of one (1). It defines a simple M:N relationship where the data implementing 
the relationship are kept in the M side. The whole range of values of the 
relationship_type attribute is provided in table 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 80 

The last attribute in the previous row of the Authority_links table is the 
integer value of one (1). It defines a simple M:N relationship where the data 
implementing the relationship are kept in the M side. The whole range of values 
of the relationship_type attribute is provided in table 1. 
 
Incident_code S001 

 

Date_started 13/5/2007 
 

Date_ended 20/5/2007 
 

Patient_code A001 
 

SSI_code T001 
 

Incident_doctors I001 
 I002 
 I079 

 

Diag_code 574 
 

Incident_ 
operations 

Operation_ 
code 

IO_ 
datetime_started 

IO_ 
Datetime_ended IO_ID 

 E002 14/5/2007 13:35 14/5/2007 15:05 317 
 E015 16/5/2007 12:00 16/5/2007 13:00 318 

 

Lab_ 
Examinations 

LE_ 
code LE_datetime LE_result 

 UREA 15/5/2007 10:00 32,4 mg/dl 
 UREA 15/5/2007 14:30 32,5 mg/dl 
 UREA 16/5/2007 08:00 31,6 mg/dl 
 CREA 15/5/2007 10:00 1,17 mg/dl 
 CREA 16/5/2007 08:00 1,08 mg/dl 
 PROT 15/5/2007 10:00 7,19 g/dl 
 PROT 16/5/2007 08:00 6,95 g/dl 

 

Rad_ 
Examinations RE_code RE_datetime RE_FilePath 

 U/S Kidney 16/5/2007 12:00 \\FS1\RIS\ Uaz34.tif 
Figure 6. An Incident CAL frame object. 

 



DATABASE DESIGN REVISITED 64 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 81 

 
Doctor_code I001 
 

name Michel 
 

surname Garidopoulos 
 

Operations 
_participated IO_ID part_begin part_end 

 317 14/5/2007 13:35 14/5/2007 15:05 
(a) 

 

Doctor_code I005 
 

name Paul 
 

surname Alexiou 
 

Operations 
_participated IO_ID part_begin part_end 

 317 14/5/2007 13:35 14/5/2007 14:25 
(b) 

 

Doctor_code I012 
 

name … 
 

surname … 
 

Operations 
_participated IO_ID part_begin part_end 

 318 16/5/2007 12:00 16/5/2007 13:00 
(c) 

 

Doctor_code I032 
 

name … 
 

surname … 
 

Operations 
_participated IO_ID part_begin part_end 

 318 16/5/2007 12:00 16/5/2007 13:00 
(d) 

 

Doctor_code I065 
 

name … 
 

surname … 
 

Operations 
_participated IO_ID part_begin part_end 

 317 14/5/2007 13:35 14/5/2007 15:05 
(e) 

 

Doctor_code I100 
 

name … 
 

surname … 
 

Operations 
_participated IO_ID part_begin part_end 

 317 14/5/2007 14:25 14/5/2007 15:05 
 318 16/5/2007 12:00 16/5/2007 13:00 

(f) 
Figure 7. Some Doctor CAL frame objects. 



INTERNATIONAL JOURNAL ON INTEGRATED INFORMATION MANAGEMENT 65 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

According to table 1 and based on the early solution (ERD of figure 1) where 
there are no attributes for the relationship between the weak entity type ―Incident 
Operationǁ‖ (the operations that a patient undertook during the period of an incident) 
and the entity type ―Doctorǁ‖, the relationship is declared as: 
(‘Incident’, ‘Incident_operations’, ‘IO_doctors’, ‘Doctor’, ‘Doctor_code’, null, 3) 

In case that the relationship between the weak entity type “Incident Operation” 
and the entity type “Doctor” has attributes (ERD of figure 5) and according to the 
modified CAL entity types, the relationship is declared as: 
(‘Incident‘, ‘Incident_operations’, ‘IO_ID’, ‘Doctor, ‘Operations_participated’, ‘IO_ID’, 
14) 

5.5.   The modified Relational Model 

The relational model that corresponds to the modified ER diagram (Figure 5) is 
depicted in Figure 8. This relational schema is derived from the relational model of 
Figure 4 by a simple modification (addition of only two fields in an existing relation / 
table, the table Doctors_per_Incident_Operation). However, the deficiency of the non-
easy expression of real-world problem queries in the manipulation language of the 
relational model still exists. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 82 

Table 1. The range of values for the attribute relationship_type. 
type Explanation Symbol 
1 Simple M:N, data implementing the relationship are kept in the M side M:N/L 
2 Simple M:N, data implementing the relationship are kept in the N side M:N/R 
3 S(M):N, data implementing the relationship are kept in the S(M) side S(M):N/L 
4 S(M):N, data implementing the relationship are kept in the N side S(M):N/R 
5 N:S(M), data implementing the relationship are kept in the N side N:S(M)/L 
6 N:S(M), data implementing the relationship are kept in the S(M) side N:S(M)/R 
7 S(M):S(N), data implementing the relationship are kept in the S(M) side S(M):S(N)/L 
8 S(M):S(N), data implementing the relationship are kept in the S(N) side S(M):S(N)/R 
11 Simple M:N, data implementing the relationship are kept in subfield in 

the M side 
M:N/Lp 

12 Simple M:N, data implementing the relationship are kept in subfield in 
the N side 

M:N/Rp 

14 S(M):N, data implementing the relationship are kept in subfield in the N 
side 

S(M):N/Rp 

15 N:S(M), data implementing the relationship are kept in subfield in the N 
side 

N:S(M)/Lp 

20 Authority control over Tag A/T 
21 Authority control over Subfield A/S 
 

According to table 1 and based on the early solution (ERD of figure 1) 
where there are no attributes for the relationship between the weak entity type 
“Incident Operation”  (the  operations  that  a  patient  undertook  during  the  period  
of an incident) and the entity type “Doctor”,  the  relationship  is  declared  as: 

(‘Incident’,   ‘Incident_operations’,   ‘IO_doctors’,   ‘Doctor’,   ‘Doctor_code’,   null,  
3) 

In case that the relationship between the weak entity type “Incident  
Operation”   and the entity type “Doctor”   has   attributes   (ERD of figure 5) and 
according to the modified CAL entity types, the relationship is declared as: 

(‘Incident’,  ‘Incident_operations’,  ‘IO_ID’,  ‘Doctor’,  ‘Operations_participated’,  
‘IO_ID’,  14) 

5.5.   The modified Relational Model 

The relational model that corresponds to the modified ER diagram (Figure 5) is 
depicted in Figure 8. This relational schema is derived from the relational model 
of  Figure 4 by a simple modification (addition of only two fields in an existing 
relation / table, the table Doctors_per_Incident_Operation). However, the 
deficiency of the non-easy expression of real-world problem queries in the 
manipulation language of the relational model still exists. 

 83 

Figure 8. The relational model corresponding to the modified ER diagram of the HIS-EPR. 

6.   Conclusions 

So far, the design of an application having a relational data repository mainly 
required the decomposition of the real world structures into very simple 
attributes, the composition of a logical schema with naive relational structures 
and the formation of query and manipulation (SQL) statements based on the 
logical schema. The need for a database query and manipulation language, like 
CUDL, able to handle directly composite entities of more abstract data models 
that offer composite / complex data types expressing real world entities  
(without transforming them to a relational logical schema) is apparent. The types 
used in CUDL allow a database designer / developer to express the structures of 
his application with types that are very close to the ER entity types, while ER 
entity types can be directly transformed to CAL entity types. Thus, the designers 
and developers can be concentrated with the business logic of their applications, 
instead of wasting time for the expression of statements that manipulate naive 
database structures. 

The basic set of rules for transforming (the relationship types of) an ER 
diagram to CAL, so that the CUDL can be utilized to manipulate the resulting 
high level entities was supplemented with an extra rule about the translation of a 
relation between a weak and a strong (not identifying) entity that also has 
attributes.  This rule applies in a specific subcase of relation between entity 
types that uncovers the barriers of the underlying Frame DataBase (FDB) model 
[23] (the FDB model permits the use of composite data types, but not in any 
depth). 

Possible future research directions include: 



DATABASE DESIGN REVISITED 66 

6.   Conclusions 

So far, the design of an application having a relational data repository mainly 
required the decomposition of the real world structures into very simple attributes, 
the composition of a logical schema with naive relational structures and the 
formation of query and manipulation (SQL) statements based on the logical schema. 
The need for a database query and manipulation language, like CUDL, able to 
handle directly composite entities of more abstract data models that offer composite 
/ complex data types expressing real world entities (without transforming them to a 
relational logical schema) is apparent. The types used in CUDL allow a database 
designer / developer to express the structures of his application with types that are 
very close to the ER entity types, while ER entity types can be directly transformed 
to CAL entity types. Thus, the designers and developers can be concentrated with 
the business logic of their applications, instead of wasting time for the expression of 
statements that manipulate naive database structures. 

The basic set of rules for transforming (the relationship types of) an ER diagram 
to CAL, so that the CUDL can be utilized to manipulate the resulting high level 
entities was supplemented with an extra rule about the translation of a relation 
between a weak and a strong (not identifying) entity that also has attributes. This 
rule applies in a specific subcase of relation between entity types that uncovers the 
barriers of the underlying Frame DataBase (FDB) model [23] (the FDB model permits 
the use of composite data types, but not in any depth). 

Possible future research directions include: 
• extending FDB and CUDL in order to explicitly document the foreign keys 

and other constraints, 
• completing the analysis and design process that consists in the quadruple 

“ER, CAL, FDB, physical level” by providing a physical model and a 
transformation of the FDB to this model, 

• implementing a database machine storing data based on this physical model 
and being able to process CUDL queries, 

• designing algorithms for optimized processing of CUDL queries, 
• evaluating this machine in terms of performance and suitability for 

development of complex applications. 

References 

[1] Anhøj, J. (2003). Generic Design of Web-Based Clinical Databases. Journal 
Medical Internet Research, 4. 

[2] Atzeni, P., Cappellari, P., Torlone, R., Bernstein, P.A., Gianforme, G. (2008). 
Model-independent schema translation, The VLDB Journal, 17(6): 1347—1370. 

[3] Atzeni, P., Del Nostro, P., Paolozzi, S. (2008). Ontologies And Databases: Going 
Back And Forth. In: 4th International VLDB Workshop on Ontology-based 
Techniques for DataBases in Information Systems and Knowledge Systems 
(ODBIS 2008). Auckland, New Zealand. 

[4] Cai. J., Johnson, S., Hripcsak, G. (2000). Generic Data Modeling for Home 
Telemonitoring of Chronically Ill Patients. In: American Medical Informatics 
Association - Annual Symposium 2000 (AMIA 2000), pp. 116—120. Los Angeles, 
CA. 

[5] Elmasri, R., Navathe, S.B. (2000). Fundamentals of Database Systems, 3rd 
Edition. Addison Wesley Publishing Company: Reading, Mass. 

[6] Fischer P.C., Van Gucht D. (1985). Determining when a Structure is a Nested 
Relation. In: 11th Int. Conf. on Very Large DataBases (VLDB 1985), pp. 171—
180. Morgan Kaufmann: Stockholm, Sweden. 



INTERNATIONAL JOURNAL ON INTEGRATED INFORMATION MANAGEMENT 67 

[7] Johnson S. B., Chatziantoniou D. (1999). Extended SQL for manipulating 
clinical warehouse data. In: American Medical Informatics Association 
Symposium (AMIA 1999), pp. 819—823. 

[8] Johnson, S.B. (1996). Generic data modeling for clinical repositories. Journal of 
American Medical Informatics Association, 3 (5): 328—339. 

[9] Karanikolas, N.N., Nitsiou, M., Yannakoudakis, E.J., Skourlas, C. (2007). CUDL 
language semantics, liven up the FDB data model. In: 11th East- European Conf. 
on Advances in Databases and Information Systems (ADBIS 2007), local 
proceedings, pp. 1-16. Technical Univ. of Varna: Varna, Bulgaria. 

[10] Karanikolas, N.N., Nitsiou, M., Yannakoudakis, E.J. (2008). CUDL Language 
Semantics: Authority Links. In: 12th East-European Conf. on Advances in 
Databases and Information Systems (ADBIS 2008), pp.123—139. Tampere Univ. 
of Technology: Pori, Finland. 

[11] Karanikolas, N. N., Nitsiou, M., Yannakoudakis, E. J., Skourlas, C. (2009). 
CUDL Language Semantics: Updating Data. Journal of Systems and Software, 
82(6): 947—962. doi:10.1016/j.jss.2008.12.031 

[12] Karanikolas N. and Vassilakopoulos M. (2009). Conceptual Universal Database 
Language: Moving Up the Database Design levels. In: Proc. Of ADBIS'09, LNCS 
5739, Riga, pp. 330—346. 

[13] Karanikolas N. and Vassilakopoulos M. (2010). Database Design with Real-
World Structures. eRA-5. 5th Conference for the contribution of Information 
Technology to Science, Economy, Society and Education. 

[14] Martins, J., Nunes, R., Karjalainen, M., Kemp, G.J.L. (2008). A Functional Data 
Model Approach to Querying RDF/RDFS Data. In: 25th British National 
Conference on Databases (BNCOD 2008), pp. 153—164. Cardiff, UK. 

[15] Nadkarni P. (2002). An introduction to entity-attribute-value design for generic 
clinical study data management systems. Presentation in: National GCRC 
Meeting. Baltimore, MD. 

[16] Nadkarni P.M. (2000). Clinical Patient Record Systems Architecture: An 
Overview. Journal of Postgraduate Medicine, 46 (3): 199—204. 

[17] Pavkovic ́, N., S ̌torga, M., Pavlic ́, D. (2001). Two Examples of Database 
Structures in Management of Engineering Data. In: 12th Int. Conf. on Design 
Tools and Methods in Industrial Engineering, pp. 89—90. ADM-Associazione 
Nazionale Disegno di Macchine: Bologna. 

[18 Schek H.J., Pistor P. (1982). Data Structures for an Integrated Data Base 
Management and Information Retrieval System. In: 8th Int. Conf. on Very Large 
DataBases (VLDB 1982), pp. 197—207. Morgan Kaufmann: Mexico City, Mexico 

[19] van Keulen, M., Vonk, J., de Vries, A.P., Flokstra, J., Blok, H.E. (2002). Moa: 
extensibility and efficiency in querying nested data. Technical Report TR-CTIT-02-
19. Centre for Telematics and Information Technology, Univ. of Twente, The 
Netherlands. 

[20] Worboys, M.F., Hearnshaw, H.M., Maguire, D.J. (1990). Object-Oriented Data 
Modelling for Spatial Databases. Int. Journal of Geographical Information 
Systems, 4 (4): 369—383. 

[21] Yannakoudakis E.J., Diamantis I.K. (2001). Further improvements of the 
Framework for Dynamic Evolving of Database environments. In: 5th Hellenic – 
European Conf. on Computer Mathematics and its Applications (HERCMA 2001), 
Athens, Greece 

[22] Yannakoudakis E.J., Nitsiou M., Skourlas, C., Karanikolas, N.N. (2007). Tarski 
algebraic operations on the frame database model (FDB). In: 11th Panhellenic 
Conf. in Informatics (PCI 2007), pp. 207—216. New Technologies Publications: 
Patras, Greece. 

[23] Yannakoudakis E.J., Tsionos C.X., Kapetis C.A. (1999). A new framework for 
dynamically evolving database environments. Journal of Documentation, 55 (2): 144—158. 


