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Abstract: Indexing of k-dimensional point data is becoming again a hot research topic 
because of the need to efficiently index and retrieve high dimensional vectors (points) in 
data mining applications. The most common query on such vectors is kNN searching, which 
is a variation of range searching. Most multidimensional indexes for point data follow the 
paradigm of the ubiquitous B+tree and store data entries at the leaf level of the index (data 
nodes). Since this level naturally occupies the majority of nodes in a multidimensional index 
tree, it is crucial that an index structure achieves the best possible average storage 
utilization regardless of data distribution and order of data insertion. An additional 
conflicting goal is the minimization of the index term that is posted at the levels above when 
data nodes are split. In this paper we revisit data node splitting techniques for point access 
methods like the KDB-tree, hB-tree, and, in general, any index that stores point data at its 
leaf level nodes and splits them so that no overlapping subspaces are created at the leaf 
level. We experiment with various splitting techniques that produce the minimum index 
term for posting but differ in the shape of the resulting nodes and the average storage 
utilization. We also test our splitting techniques using uniform and skewed data 
distributions. The comparison is on the average data node storage utilization and the 
efficiency of range query searches. 
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1.   Introduction 

Lately, there is an increased interest in access methods for multidimensional points 
or vectors (point access methods - PAMs). This is explained by the fact that data 
mining applications need to manipulate and analyze vast quantities of multi-
dimensional vectors, especially when dealing with time-series data. The well-known 
problem of the “curse of dimensionality”, states that above 8 to 16 dimensions and 
depending on the dataset at hand, exhaustive search of the dataset is faster than 
using a PAM for the purpose of range or k-NN queries [1]. 

Moreover, vectors in data mining applications can have hundreds of dimensions 
that can be correlated and, thus, it is necessary to reduce their dimensionality in 
order to reduce the volume of data without losing much information. Researchers in 
the data mining field use various dimensionality reduction techniques and usually 
reduce the dimensionality of vectors down to 6 to 20 dimensions. Thus, PAMs that 
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index the multidimensional space without creating overlapping subspaces and work 
well in low to medium dimensions are an attractive choice for indexing such large 
point datasets. 

In this paper, we assume that our data records are multi-dimensional points and 
that the index of choice is a PAM, e.g., the hB-tree [3,4] or the KDB-tree [5], etc., 
that stores points in the leaf nodes and splits them in non-overlapping regions. We 
choose to split data nodes using hyper-planes, i.e., a single attribute, since this 
approach requires the smallest index term to describe the split. Only the splitting 
attribute and its value are required to be posted at the index level above (the parent 
of the overfull node) to describe the split. We experiment with various splitting 
techniques and report on their performance in terms of the average data node 
storage utilization and the efficiency of range query searches. 

In Section 2, we discuss the problem of data node splitting and how it can affect 
the performance of an index structure. In Section 3, we present three splitting 
techniques, and, in Section 4, we describe the experiments we conducted on the 
performance of the splitting techniques. We conclude the paper in Section 5. 
 

2.   Data node splitting 

Data nodes contain the records (multidimensional points) of the database. In a way 
analogous to the B+tree [2], when a data node becomes overfull because of 
insertions of new points, it has to be split. After the split we end up with two data 
nodes, the initial one occupying the same disk page and a new one occupying a new 
disk page. This process is repeated continuously, every time a data node is overfull. 

In Figure 1, we demonstrate a simple example where two splits took place and 
we got three data nodes occupying three disk pages (we assume 7 points per data 
node). We started with an initial data node d1, which became overfull and was split 
to two data nodes d1 and d2. Next, d2 became overfull and was split to d2 and d3. 
However, we can observe that the total number of points residing in the three data 
nodes is 10 and can easily fit to two data nodes only. We could have avoided the 
second split and end up with only two data nodes to store our points, had we 
planned the first split more carefully. 

In Figure 2, we see that because we performed the first split in a different 
manner, the second split did not happen and the same number of points as in the 
case of Figure 1 was accommodated in two data nodes. 

Thus, data node splitting, although it seems to be an easy and trivial process, is 
a very important issue and requires careful planning. By avoiding unnecessary 
splits, we: 
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• reduce the total number of data nodes and hence the disk pages needed, 
• increase data node storage utilization, 
• reduce the height of the tree, since less splits means less information 

posted above, 
• make exact match query faster, since the tree height is smaller, make 

range queries more effective, since the points searched are 
accommodated to fewer nodes and less disk pages are accessed. 
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Thus, data node splitting, although it seems to be an easy and trivial 
process, is a very important issue and requires careful planning. By avoiding 
unnecessary splits, we: 

 
Figure 1: Ineffective data node splitting 

 
x reduce the total number of data nodes and hence the disk pages needed, 
x increase data node storage utilization, 
x reduce the height of the tree, since less splits means less information posted 

above, 
x make exact match query faster, since the tree height is smaller, 
x make range queries more effective, since the points searched are 

accommodated to fewer nodes and less disk pages are accessed. 
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2.1.   Splitting criteria 

Let’s discuss the criteria by which we decide to split a data node. To better follow the 
discussion and visualize the problem we examine the 2-dimensional case. 

When we have an overfull data node the aim is to carry out the split in a way 
that minimizes the cost of future queries. One approach is to split the space of the 
data node in half along the longest edge and to ignore the distribution of the points 
in the node [1]. The two resulting data nodes will refer to the same amount of space 
and will have regular shapes, i.e., edges of similar lengths. This means that they will 
have the same probability of receiving new insertions of points or of being visited by 
subsequent range queries. The problem is that by following this approach we may 
end up having nodes with low or zero storage utilization. 

A variation of the above approach is to split the space in half using the attribute 
that achieves the best point split, i.e., the one closer to a 1/2-1/2 split. Again, it 
may be the case that neither x nor y lead to a good point split. 

An alternative approach is to concentrate on the distribution of points. With this 
approach we always try to achieve an even point split without guaranteeing an even 
space split. For example, in Figure 3 we could choose the median of attribute x to 
evenly split the points of the data node. 
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Figure 2: Effective data node splitting 

 

2.1.   Splitting criteria 

Let’s   discuss   the   criteria   by   which   we   decide   to   split   a   data   node.   To   better  
follow the discussion and visualize the problem we examine the 2-dimensional 
case. 

When we have an overfull data node the aim is to carry out the split in a 
way that minimizes the cost of future queries. One approach is to split the space 
of the data node in half along the longest edge and to ignore the distribution of 
the points in the node [1]. The two resulting data nodes will refer to the same 
amount of space and will have regular shapes, i.e., edges of similar lengths. This 
means that they will have the same probability of receiving new insertions of 
points or of being visited by subsequent range queries. The problem is that by 
following this approach we may end up having nodes with low or zero storage 
utilization. 
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We can improve the above approach by choosing the median of the attribute 
that achieves the best space split, or better relax the condition that data nodes are 
split at the median of the chosen attribute. For example, in Figure 4, if we move the 
value of the splitting attribute x to the right we can achieve an even point and space 
split at the same time. 

In the following sections, we describe three splitting techniques and show the 
results from the experiments we carried out. We emphasize on the advantages or 

disadvantages of each technique applied to random (uniformly distributed) data and 
highly skewed data. 

 
 
 
 
 
 
 
 
 
 
 
 
 

3.   Presentation of tested data node splitting techniques 

3.1.   Round robin attribute for even point split 

This is the simplest technique. We perform an even point split on the first data node 
using the first attribute. When either of the two data nodes that resulted from the 
first split becomes overfull, it is split using the next attribute in turn, and so on. 

For uniformly distributed in space points, this splitting process achieves good 
storage utilization since nodes are always split at a 1/2-1/2 ratio. It also achieves 
good space partitioning since data nodes are always split along the longest edge. The 
performance could be very poor for skewed data. Another drawback of the technique 
is that every data node must store the bookkeeping information of the attribute that 
should be used for the following split. 

Figure 5 demonstrates a scenario where this technique has very poor 
performance. We assume that a node can hold only 4 points, and the insertion of the 
fifth point causes a split. In the end, we have inserted 10 points, we have made 4 
splits and we have 5 data nodes most of which have very low storage utilization. The 
problem here was that when in a data node most of the points had the same x 
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A variation of the above approach is to split the space in half using the 
attribute that achieves the best point split, i.e., the one closer to a 1/2-1/2 split. 
Again, it may be the case that neither x nor y lead to a good point split. 

An alternative approach is to concentrate on the distribution of points. With 
this approach we always try to achieve an even point split without guaranteeing 
an even space split. For example, in Figure 3 we could choose the median of 
attribute x to evenly split the points of the data node. 

We can improve the above approach by choosing the median of the attribute 
that achieves the best space split, or better relax the condition that data nodes are 
split at the median of the chosen attribute. For example, in Figure 4, if we move 
the value of the splitting attribute x to the right we can achieve an even point and 
space split at the same time. 

In the following sections, we describe three splitting techniques and show 
the results from the experiments we carried out. We emphasize on the 
advantages or disadvantages of each technique applied to random (uniformly 
distributed) data and highly skewed data. 
 

 
Figure 3: Splitting using the median 

 
Figure 4: Splitting points and space evenly 

 

3.   Presentation of tested data node splitting techniques 

3.1.   Round robin attribute for even point split 

This is the simplest technique. We perform an even point split on the first data 
node using the first attribute. When either of the two data nodes that resulted 
from the first split becomes overfull, it is split using the next attribute in turn, 
and so on. 

For uniformly distributed in space points, this splitting process achieves 
good storage utilization since nodes are always split at a 1/2-1/2 ratio. It also 
achieves good space partitioning since data nodes are always split along the 
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attribute value we were forced to split using x instead of y that could achieve a 
better point split. When having such non-uniform point distributions the higher the 
dimensionality the worst the problem gets, i.e., we may end up with data nodes with 
very low storage utilization. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.2.   Best attribute for even point split and best possible space split 

This technique is both point and space oriented and favors even point splits. We 
choose as the splitting attribute the one that achieves the best point split, i.e., 
closest to a 1/2-1/2 ratio. If more than one attribute qualifies, we pick the one that 
achieves the best space split, i.e., closest to a 1/2-1/2 ratio. Again, if more than one 
attribute qualifies, we choose the one that splits along the longest edge. This 
technique guarantees high storage utilization and good space partitioning. It works 
well for random data but for non-uniform data there is no guarantee that the space 
partitioning will be even. In Figure 6, we see a scenario where attribute y will be 
chosen to perform the split of node d1. 
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longest edge. The performance could be very poor for skewed data. Another 
drawback of the technique is that every data node must store the bookkeeping 
information of the attribute that should be used for the following split. 

Figure 5 demonstrates a scenario where this technique has very poor 
performance. We assume that a node can hold only 4 points, and the insertion of 
the fifth point causes a split. In the end, we have inserted 10 points, we have 
made 4 splits and we have 5 data nodes most of which have very low storage 
utilization. The problem here was that when in a data node most of the points 
had the same x attribute value we were forced to split using x instead of y that 
could achieve a better point split. When having such non-uniform point 
distributions the higher the dimensionality the worst the problem gets, i.e., we 
may end up with data nodes with very low storage utilization. 

 
Figure 5: Round-robin splitting with poor performance 

 

3.2.   Best attribute for even point split and best possible space split 

This technique is both point and space oriented and favors even point splits. We 
choose as the splitting attribute the one that achieves the best point split, i.e., 
closest to a 1/2-1/2 ratio. If more than one attribute qualifies, we pick the one 
that achieves the best space split, i.e., closest to a 1/2-1/2 ratio. Again, if more 
than one attribute qualifies, we choose the one that splits along the longest edge. 
This technique guarantees high storage utilization and good space partitioning. It 

 7 

works well for random data but for non-uniform data there is no guarantee that 
the space partitioning will be even. In Figure 6, we see a scenario where 
attribute y will be chosen to perform the split of node d1. 

 
Figure 6: Data node where attribute y splits evenly both points and space 

In Figure 7, we see a scenario where x should be chosen as the splitting 
attribute. Here, both x and y achieve the best point and space splits, but x splits 
along the longest edge 1. 

 
Figure 7: Both x and y achieve even point and space split, but x splits the longest edge  

 

3.3.   Best attribute for even space split and a minimum 1/3-2/3 point split 

This method is also both space and point oriented, but favors even space splits. 
We choose an attribute that achieves an even space split and a point split of at 
least 1/3-2/3. As shown in [4], such a splitting ratio guarantees very good 
storage utilization. We order the attributes according to the length of the edge 
they split and we choose the best one. If no such attribute exists, we choose the 
attribute that can achieve a 1/3-2/3 point split by compromising the evenness of 
the space split. For example, in Figure 8 we see a scenario where y should be 
chosen as the splitting attribute. 
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3.3.   Best attribute for even point split and a minimum 1/3-2/3 point split 

This method is also both space and point oriented, but favors even space splits. 
We choose an attribute that achieves an even space split and a point split of at least 
1/3-2/3. As shown in [4], such a splitting ratio guarantees very good storage 
utilization. We order the attributes according to the length of the edge they split and 
we choose the best one. If no such attribute exists, we choose the attribute that can 
achieve a 1/3-2/3 point split by compromising the evenness of the space split. For 
example, in Figure 8 we see a scenario where y should be chosen as the splitting 
attribute. 

 
 
 
 
 
 
 

 
 

 
 

4.   Experiments 

We tested the three splitting techniques using uniform and highly skewed computer 
generated 2d points. We varied the size of the data node to hold 25, 50 and 100 
points and the size of the dataset to be 10K, 100K and 1M points. We use the 
notation t1, t2, and t3 for the three techniques, i.e., round-robin best point split, 
best point split, and best space split, respectively. 
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Figure 8: y compromises space split evenness to achieve a 1/3-2/3 point split  

 

4.   Experiments 

We tested the three splitting techniques using uniform and highly skewed 
computer generated 2d points. We varied the size of the data node to hold 25, 50 
and 100 points and the size of the dataset to be 10K, 100K and 1M points. We 
use the notation t1, t2, and t3 for the three techniques, i.e., round-robin best 
point split, best point split, and best space split, respectively. 

In Table 1, we observe that t1 and t2 have almost identical performance 
regarding data node storage utilization when using uniform data. Utilization is 
about 70% regardless of dataset and node sizes. On the other hand, t3 gets worse 
as the dataset and node sizes increase. This is explained by the fact that t3 favors 
even space partitioning over even point partitioning. In Table 2, where the data 
is skewed, we observe similar behavior for t1 and t2, but now t3 has 
significantly improved performance – almost comparable to the one of t1 and t2 
for large dataset and node sizes. 

 
Table 1: Uniform data: data node storage utilization for various dataset 
and page sizes 
 25   50   100   
 10K 100K 1M 10K 100K 1M 10K 100K 1M 
t1 69,81 70,08 70,16 70,67 69,78 69,82 70,92 68,49 69,57 
t2 70,05 70,18 70,29 72,20 69,93 69,78 73,53 68,63 69,41 
t3 72,86 69,35 66,45 74,63 70,00 63,76 78,13 69,93 61,63 

 
Table 2: Skewed data: data node utilization for various dataset and page 
sizes 
 25   50   100   
 10K 100K 1M 10K 100K 1M 10K 100K 1M 
t1 69,69 70,05 70,13 71,17 69,91 69,75 68,03 69,20 69,75 
t2 70,42 70,68 70,31 70,67 69,88 69,80 70,42 69,44 69,48 
t3 66,78 67,81 68,11 67,34 67,02 67,89 62,50 65,49 67,59 
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In Table 1, we observe that t1 and t2 have almost identical performance 
regarding data node storage utilization when using uniform data. Utilization is about 
70% regardless of dataset and node sizes. On the other hand, t3 gets worse as the 
dataset and node sizes increase. This is explained by the fact that t3 favors even 
space partitioning over even point partitioning. In Table 2, where the data is skewed, 
we observe similar behavior for t1 and t2, but now t3 has significantly improved 
performance – almost comparable to the one of t1 and t2 for large dataset and node 
sizes. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Next we conducted some range query experiments. We chose 100 random 

queries with 1% space selectivity and we report the percent of the data pages visited 
to answer these queries. For uniform data one expects about 1% for the pages to be 
visited. All three techniques approach this number for large datasets (or large trees). 
Since t3 favors even space partitioning, it slightly outperforms the other two point 
partitioning techniques regardless of dataset and node sizes (see Table 3). Finally, 
for skewed data, t2 that favors even point partitioning and at the same time tries to 
achieve good space partitioning, clearly outperforms the other two techniques 
regardless of dataset and node sizes (see Table 4). 

 

5.   Conclusions 

We presented three data node splitting techniques for point access methods that 
split space in non-overlapping regions. The techniques differ in the way they split 
overfull data nodes. They choose the splitting attribute and its value in order to 
achieve simultaneously even point and space splits. Since this is impossible to 
achieve unless data is uniformly distributed in space, we are interested in the 
performance of the various techniques when data is highly skewed. Our experiments 
showed that a technique that favors even point splits and tries to achieve good space 
splits is best when data is uniform. On the other hand, a technique that favors even 
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Figure 8: y compromises space split evenness to achieve a 1/3-2/3 point split  
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space splits and tries to achieve acceptable point splittings, clearly outperforms all 
other techniques at the price of slightly reduced data node storage utilization. 

We plan to further improve our data node splitting techniques and test their 
performance in higher dimensions and with non-uniform data from real world 
scientific applications. 
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